INTRODUCTION

Epilepsy is defined as the repeated occurrence of sudden, excessive and/or synchronous discharges in cerebral cortical neuron resulting in disruption of consciousness\(^1\), disturbance of sensation, movements, and impairment of mental function or some combination of these signs. Therefore they are called ictal (Latin word meaning – strike) events.\(^2\) It involves reduction in inhibitory, i.e. GABA-mediated drive or increase in excitatory, i.e. glutamate mediated inputs and disturbances in the voltage dependent ion channels.\(^3\)

Conventional drug therapy though effective is associated with various side effects, teratogenicity and chronic toxic effects.\(^4\) Hence there is a need for development of safe, effective herbal drugs. One of the herbal plants used as anti convulsant is cassia auriculata (fabaceae).\(^5\) It is also used for anemia, biliousness, febrifuge in splenic enlargements, cholera, jaundice, tumors, gout, bronchitis, probably in leprosy,\(^6\) detoxification ability,\(^7\) anti inflammatory properties.\(^8\) The present study aims to evaluate the anti convulsant effect of cassia auriculata seed extract.

MATERIALS AND METHODS

Experimental Animals and Housing of Animals

Swiss Albino Mice (15-25g) of either sex were used for the study. Animals were obtained from in house facility and housed in the room in an artificial light/dark cycle (12/12 hr, light on from 7 a.m. to 7 p.m.), under standard conditions with free access to food and water. The study was performed in accordance with the guidelines issued by CPCSEA.

Plant material

The Seed of Cassia auriculata were collected from local areas of Rajendranagar, Hyderabad, Telangana, India and authenticated by Department of Pharmacognosy, Jawaharlal Nehru Technological University, Hyderabad.

Preparation of Extraction

Cassia auriculata ethanolic seed extract (CSE) was prepared by using ethanol, by maceration method for 50hrs. The extract was filtered and evaporated to obtain the CSE.

Preliminary phytochemical studies

The result of preliminary phytochemical screening is presented by performing Qualitative phytochemical studies on Cassia auriculata ethanolic seed extract using suitable chemicals and reagents to confirm the presence of flavonoids, tannins, lipids, polyphenols, triterpenoids and steroids.

ANTICONVULSANT METHOD

Maximal Electroshock seizure (MES) model

The anti convulsant activity of cassia auriculata was evaluated using maximal electro shock model. MES of 50mA current for 0.2sec were administered through ear electrode to induce convulsion in the control and drug treated animals. The test animals were administered orally with the test doses 250, 500 and 1000 mg/kg of ethanolic extract of cassia auriculata seeds and the standard drug (25 mg/kg) is injected i.p and tested after
30 mins for MES induced seizure response. All the tested animals were compared with the control mice.

Pentylenetetrazole induced seizures (PTZ) model
PTZ at a dose of 60 mg/kg i.p was administered 60 min after the i.p treatment with the drugs i.e., test drug doses 250, 500, 1000 mg/kg and standard (phenytoin-25 mg/kg) to induce clonic-tonic convulsions in mice. The incidence of hind limb tonic extension (HLTE) and duration of seizures were noted. The animals were considered protected if no HLTE has produced during the time limit.\[11\]

Statistical analysis
The data were analyzed using One-way analysis of variance (ANOVA) followed by Dunnett’s test. P values <0.05 were considered significant.

RESULTS
The phytochemical analysis reveals that the ethanolic seed extract of Cassia auriculata consists of flavonoids, alkaloids, triterpenoids, tannins, saponins and large amounts of cardiac glycosides. The anticonvulsant activity of ethanolic extract at various doses (250, 500, 1000 mg/kg, p. o.) was studied by the maximum electroshock-induced and PTZ seizure models. The anticonvulsant activity induced by MES model of the ethanolic extract of Cassia auriculata is shown in Table 1, at dose level of 500 mg/kg elicits significant activity, though lesser comparable to that of Phenytin (standard) and it also showed potent activity at 250 & 1000 mg/kg. In PTZ induced seizures, the administration of Cassia auriculata ethanolic seed extract at doses of 250 and 1000 mg/kg b.w. 1 hr prior to the injection of PTZ, significantly (p<0.01) delayed the on-set of convulsions as shown in Table 2.

MAXIMAL ELECTROSHOCK-INDUCED SEIZURES MODEL

Table 1: Effect of ethanolic extract of Cassia auriculata seed on MES induced convulsions in mice.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>GROUP</th>
<th>DOSE (mg/kg)</th>
<th>DURATION OF HLTE (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>2% gum acacia p.o.</td>
<td>13.1±0.41</td>
</tr>
<tr>
<td>2</td>
<td>CSE</td>
<td>250 mg/kg</td>
<td>8.2±0.25</td>
</tr>
<tr>
<td>3</td>
<td>CSE</td>
<td>500 mg/kg</td>
<td>6.2±0.54 *</td>
</tr>
<tr>
<td>4</td>
<td>CSE</td>
<td>1000 mg/kg</td>
<td>3.10±0.20 **</td>
</tr>
<tr>
<td>5</td>
<td>Phenytoin</td>
<td>25 mg/kg</td>
<td>2.14±0.42 **</td>
</tr>
</tbody>
</table>

*Values are expressed as mean ± S.E.M; (n =6) * P<0.05, ** P<0.01, *** P<0.001*

The duration of HLTE in control group was found to be 13.1±0.41 seconds. In mice treated with the test drug doses 250, 500, 1000 mg/kg the duration of HLTE was found to be 8.2±0.25, 6.2±0.54 and 3.1±0.20 seconds respectively. The HLTE duration for the mice treated with phenytin (25mg/kg) was found to be 2.14±0.42.

The duration of HLTE decreased significantly in a dose dependent manner in test drug treated group. The duration of HLTE decreased was moderately significant (p<0.05) whereas it was significant (p<0.01) for the test doses 200 and 400 mg/kg and the phenytoin treated (25 mg/kg) groups.

![MES induced model](image-url)
Fig. 1: Effect of ethanolic seed extract of Cassia auriculata on MES induced convulsions in mice.
PENTYLENETETRAZOLE (PTZ) INDUCED SEIZURES MODEL

Table 2: Effect of ethanolic extract of Cassia auriculata seed on PTZ induced convulsions in mice.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>GROUP</th>
<th>DOSE (mg/kg)</th>
<th>ONSET TIME (sec)</th>
<th>DURATION OF HLTE (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>2% gum acacia p.o.</td>
<td>61.0±5.14</td>
<td>36.1±0.75</td>
</tr>
<tr>
<td>2</td>
<td>CSE</td>
<td>250 mg/kg p.o.</td>
<td>52.1±1.44</td>
<td>31.14±0.65</td>
</tr>
<tr>
<td>3</td>
<td>CSE</td>
<td>500 mg/kg p.o.</td>
<td>48.6±1.25</td>
<td>28.2±0.75</td>
</tr>
<tr>
<td>4</td>
<td>CSE</td>
<td>1000 mg/kg p.o.</td>
<td>43.1±1.02</td>
<td>26.12±0.25</td>
</tr>
<tr>
<td>5</td>
<td>Phenytoin</td>
<td>25 mg/kg p.o.</td>
<td>0.31±0.56</td>
<td>0.14±0.46</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.E.M ; *(n =6)* P<0.05, **P<0.01, ***P<0.001

The onset time of action for control, test (250, 500 and 1000 mg/kg) and Phenytoin (25 mg/kg) treated mice was 61.0±5.14, 52.1±1.44, 48.6±1.25, 43.1±1.02 and 0.31±0.56 seconds respectively. Whereas the duration of HLTE for control, test (100, 200 and 400 mg/kg) and phenytoin (25 mg/kg) treated mice was found to be 36.1±0.75, 31.14±0.65, 28.2±0.75 and 0.14±0.46 seconds respectively. The onset of action was moderately significant (p<0.05) for the test doses 250 and 500 mg/kg and significant (p<0.01) for the test dose of 1000 mg/kg and phenytoin (25mg/kg). On the other hand the duration of HLTE was moderately significant (p<0.05) for the test dose 250 mg/kg and phenytoin (25mg/kg) and significant (p<0.01) for the test doses 500 and 1000 mg/kg.

DISCUSSION

There are a number of synthetic anticonvulsant drugs currently available for use in the management, control and treatment of individuals with epilepsy. However, most of the synthetic drugs are not only inaccessible and unaffordable, but also possess many toxic adverse effects. Therefore, there is a great need for the development of cheap, effective and safe anticonvulsant agents from plants and other sources.

Neurological and behavioral disorders are one of the most common problems now a day’s throughout the world are associated with costly treatment. Dependence, addiction and habituation are the major drawbacks of modern allopathic drugs used to treat psychological problems. Pharmacological evaluation of the anticonvulsant properties of the CSE against PTZ & MES induced seizure revealed that the extract exhibited statistically significant & dose dependent delay in the onset of seizure and also reduction in the duration of HLTE. The convulsant activity of MES and PTZ may be by inhibition of gamma amino butyric acid (GABA) at GABA-A receptors. GABA is an inhibitory neurotransmitter. The enhancement and inhibition of the neurotransmission of GABA will attenuate and enhance convulsion, respectively.[13] Pentylentetrazole is an antagonist of GABA-A receptor which is widely implicated in epilepsy.[14] Further-more; drugs which protect animals against the generalized clonic seizure induced by PTZ are effective in protection and management of petit mal epilepsy.[15] Voltage dependent sodium channel blockers used as antiepileptic drugs, such as Phenytoin or glutaminergic blockers mediated by NMDA receptors such as felbamate can prevent tonic extension induced by MES.

The seizures elicited by pentylentetrazole may be by blocking chlorine channel complex or GABA which denotes that the anticonvulsive activity of Cassia auriculata may involve glutaminergic excitation and
GABAergic inhibition mechanisms or voltage gated sodium channel inhibition. Upon phytochemical screening of the plant it was found to contain flavonoids, sterols, alkaloids, glycosides, saponins and triterpenoids, which may be the reason for anticonvulsant action of Cassia auriculata seeds.

CONCLUSION
It may be concluded that the Cassia auriculata seed extract have potent anticonvulsant effect against both MEZ and PTZ induced seizures which may be due to presence of Phytochemicals present in it. The anticonvulsant action present for the drug may be due to glutaminergic transmission or GABAergic transmission or sodium channel blockade. Further studies are to be conducted to evaluate the active principle, precise mechanism(s) and safety profile of the plant as medicinal agent to treat convulsions.

REFERENCE
2. A Arzimanoglou; E Hirsh; Nehilig; AP Castelnau; P Gressens; APD Vasconcelos. Epilepsy and neuroprotection- An illustrated review, Epileptic Disord, 2002; 173–83.
18. BF Westmoreland; EE Benarroch; JR Dube; TJ Regan; BA Sandok. Medicinal neurosciences, Rochester, Margo Foundation, 1994; 307-12.