ABSTRACT

Plants are sources of large amount of drugs to treat different ailments such as fever, emetics, cancer and bacterial infections etc. The present study reports the phytochemical analysis of leaf, stem bark and root extracts with chloroform, ethyl acetate and methanol solvents from Limonia acidissima (Groff) and hexane chloroform and methanol extracts of the Pergularia daemia (Frosk) plants. Belonging to different families collected from Pedda Dornalaa, Prakasam district, Andhra Pradesh. The preliminary phytochemical screening was performed from these extracts for the presence of alkaloids, saponins, terpenoids and steroids, tannins, phenolic compounds, flavonoids, coumarins, quinones, resins, and glycosides. The presence of alkaloids, saponins, terpenoids and steroids, tannins, anthocyanidin, phenolic compounds, flavonoids, coumarins, quinones, resins, and glycosides in all these extracts indicates that they could be used for the treatment of burns and wounds. Finally, the presence of high alkaloid flavonoids and terpenoids of the plant extracts suggest their antioxidant potential and justifies their therapeutic action which could be used for drug formulation.

KEY WORDS: phytochemical constituents, alkaloids, crude extracts and flavonoids.

INTRODUCTION

India is called Botanical Garden of the world and one of the worlds twelve leading biodiversity centers which contain over 45,000 different plant species, out of this, 15,000-20,000 species are with good medicinal properties of which only about 7,000-7,500 are being used by traditional practitioners. In India, it is estimated that there are about 25,000 licensed pharmacies of Indian system of medicine. Presently, about 1000 single drugs and about 3000 compound formulations are registered. Herbal industry in India uses about 8000 medicinal plants and the annual turnover of the Indian herbal medicinal industry is more lucrative. The Siddha system of medicine uses around 600, Ayurveda 700, Unani 700 and modern medicine about 30 plant species. After information technology, herbal technology is India’s biggest revenue source.[1]

Generally plants play an important role in medicinal properties for both preventive and curative. Phytochemicals are the plant derived substances have recently become great interest owing to their versatile application. Medicinal plants are richest bioresource of drugs in traditional system of medicine and it also responsible for different colours, flavors and smell of plant. They also functions as medicaments. These medicinal values of plants lies in some chemically active substance, that produce a definite physiological action on the human body.[3] There are thousands of species of medicinal plants used globally for the cure of different infections. These plants are used as antimicrobial agents and several works have been carried out by scientists to find out its scientific basis.[3]

Since ancient times, people have been exploring the nature particularly plants in search of new drugs. This has resulted in the use of large number of medicinal plants with curative properties to treat various diseases. Nearly 80% of the worlds realizes on traditional medicines for primary health care, most of which involve the use of plant extracts. In India, almost 95% of the prescriptions were plant based in the traditional systems of Siddha, Unani, Ayurveda and Homeopathy. The study of plants continues principally for the discovery of novel secondary metabolites. Around 80% of products were of plant origin and their sales exceeded US $65 billion in 2003.[4] In India is varietal emporium of medicinal plants and is one of the richest countries in the world in regard
to genetic resources of medicinal plants. It exhibits a wide range in topography and climate, which has a bearing on its vegetation and floristic composition. Moreover, the agro-climatic conditions are conducive for introducing and domesticating new exotic plant varieties. [5]

Limonia acidissima (L.) of family Rutaceae (Citrus family) belongs to the monotypic genus *Limonia*, confined to India, Pakistan, Sri Lanka and Southeast Asia. [6] It is also known as woodapple, elephant-apple, monkey fruit, curd fruit, kath bel and kaitha. This plant is given as a medicine for the treatment of various disorders. [7] Wood-apple is useful in preventing and curing scurvy and in relieving flatulence. Mashed seedless pulp of the raw fruit is useful in the treatment of dysentery, diarrhoea and piles. *L. acidissima*, considered to be a hepatoprotectant, possess different biological activities namely adaptogenic activity against blood impurities, leucorrhoea, dyspepsia and jaundice. Traditionally, all parts of the plants are given as natural medicine as a cure for various ailments. [8] It is very often used against snakebites. [9] People use it as a tonic for liver and heart, in diarrhoea and dysentery. This fruit is considered to be an effective treatment for hiccups and for problems of throat and gum. [10]

The plant *Pergularia daemia* (Asclepiadaceae) known as “Veliparuthi” in Tamil, *Utaravaruni* in Sanskrit and “Utranajutuka” in Hindi. It is a hispid perennial herb that grows along the roadsides of India and other tropical and subtropical regions. Earlier reports indicate various beneficial uses of the herb, validating it as a medicinal herb. Traditionally the whole plant is used as anthelmintic, antipyretic, laxative and expectorant and to treat infantile diarrhoea and malarial fever. The root of the plant is effective in treating convulsions, asthma, poisoning, mental disorder, anemia, leprosy and piles. [11] Dried leaf of this plant is used as an emetic agent and is effective in treating bronchitis. [12] Asthma, rheumatic amenorrhoea, dysmenorrhoea, [14] [15] wounds [16] and to facilitate parturition. Fresh roots and shoots are found to be useful in treating whooping cough. [17] The shoots of the plant are considered to be an effective agent for abortion. [18] Stem bark is used in treating malaria [19] and twig is effective as an antipyretic agent and serves as a good appetizer. [20]

Phytochemical screening is very important in identifying new sources of therapeutically and industrially important compounds like alkaloids, flavonoids, phenolic compounds, saponins, steroids, tannins, terpenoids etc. [21] The present study aimed to find the phytochemical constituents present in chloroform, ethyl acetate and methanol extracts different parts of *L. acidissima* and hexane, chloroform and methanol extracts of leaf of *P. daemia*.

MATERIALS AND METHODS

Collection and identification of Plant Material

Plants were collected from a place at Dornala, Prakasam District, Andhra Pradesh. Prakasam district is one of the Southernmost districts of Andhra Pradesh lies between 14°57’ and 16°17’ North latitude and 73°43’ and 80°25’ East longitude, occupying an area about 17,626 Sq. km. The Nallamalais and the Veligondla are the two major hill ranges in the district, of which Veramkonda situated in the Eastern Nallamalais has the highest peak (939 m). The Nallamalais hills which form a part of Eastern Ghats run through this district is distributed by several medicinal plants which are used traditionally by local tribal people. [22] The total area of the district is 17,626 square kilometres. The total population of the district is 33; 84,192.

The authentication of the plant species were done by Prof. Dr. Vatsavaya S. Raju, Department of Botany, Kakatiya University, Warangal, Telangana-506 009, India. The plants *L. acidissima* and *P. daemia* were deposited in the Department of Botany, Kakatiya University and voucher specimens are identified as *Limonia acidissima* Groff - Acc. no. KUW1932 of Rutaceae and *Pergularia daemia* (Forssk.) Chiov. - Acc. no. KUW1926 of Apocynaceae (which now incl. Asclepiadaceae), All the collected plant parts were washed thrice with tap water and twice with distilled water to remove the adhering materials and other associated organisms.

Preparation of Plant Extracts

Selected parts of two plants were collected and left at room temperature for two weeks to dry. Samples were chopped into smaller pieces and then ground into powder. The samples were then stored in jars at room temperature until needed for extraction. Shade-dried medicinal plant samples were subjected for in 90% different organic solvents chloroform (60-62°C), ethyl acetate (76-77°C), and methanol (65°C) in a soxhlet apparatus (Borosil). After complete extraction, the filtrates were concentrated separately by rotary vacuum evaporation (>45°C) and then freeze dried (-20°C) to obtain solid residue. The extraction percentage was calculated by using the following formula:

$$\text{Percentage of extraction} = \frac{\text{Weight of the extract (g)}}{\text{Weight of the plant material (g)}} \times 100$$

These plant extracts were screened for the presence of phytochemical constituents by standard method. The plant extracts were dissolved in dimethyl sulphoxide (DMSO) and filtered through ‘millipore sterile filters’ (mesh 0.20 μm, Sartorius Stedim Biotech GmbH, Germany).

Phytochemical analysis

Chemical test were carried out using various extract such as chloroform, ethyl acetate and methanol. To identify the presence of phytochemical analysis of the extracts for
alkaloids, saponins, terpenoids and steroids, tannins, anthocyanidin, phenolic compounds, flavonoids, coumarins, quinones resins and glycosides was done by following the standard method according to Sofowara23 and Harborne.24

Test for the Alkaloids
The extract was evaporated to dryness and the residue is dissolved in 1% HCL. To this solution was added Mayer’s and Dragendorff’s reagents. Appearance of any precipitate or turbidity indicates the presence of alkaloids.

Mayer’s reagent: 1.3 g of HgCl\textsubscript{2} and 5 g of KI were dissolved separately in 60 ml of double distilled water respectively and both the solutions were mixed and diluted to 100 ml.

Dragendorff’s reagent: 8 g of Bismuth nitrate was dissolved in 20 ml of concentrated HNO\textsubscript{3} and 27.2 g of KI in 50 ml of double dissolved water. Both the solutions were allowed to stand till KIO\textsubscript{3} crystallized out. Supernatant was decanted and final volume was adjusted to 100 ml.

Test for the Saponins
The plant extract is evaporated to dryness. Tap water was added and shaken vigorously. Formation of persistent foam of about 2 cm is taken as appositive reaction.

Test for the Terpenoids and Steroids
50 of H\textsubscript{2}SO\textsubscript{4} is added along the sides of the test tube containing mixture of solvent HCl and anhydride. If there is any change in colour, from green to blue-green (sometimes via red or blue) indicates the presence of terpenoids and steroids.

Test for the Tannins
The plant extract is evaporated to dryness and the residue was dissolved in water and tested with 1% gelatine solution and gelatine salt solution (1g) gelatine dissolved in 10 g of NaCl (w/w) to separates volumes. The appearance of white precipitate will be regarded as positive reaction.

Test for the Anthocyanidin
To the plant extract was added equal volume of HCl. Appearance of red or purple colour indicates the presence of anthocyanides.

Test for Phenolic compounds
The formation of intense colour in the extract, in adding 1-2 drops of 1% ferric chloride to the extract is considered as a positive reaction test.

Test for the Flavonoids
Few ml of plant extract is added with conc HCl and Mg powder. The presence of flavonoids can be identified by the development of pink or magenta or red coloured foam.

Test for the Coumarins
To the plant extract, a few drops of alcoholic sodium hydroxide were added. Formation of yellow colour indicated the presence of coumarins.

Test for the Quinones
To 1 ml of plant extract, 1 ml of conc. H\textsubscript{2}SO\textsubscript{4} was added. Formation of red colour shows the presence of Quinones.

Test for the Resins
Plant extract were treated with acetone. To this, small amount of water was added and shaken. The appearance of turbidity indicates the presence of resins.

Test for Glycosides
To the plant extract mixed with a little anthrone on a watch glass. Few drops of conc. H\textsubscript{2}SO\textsubscript{4} was added and warmed gently over water bath. The presence of glycosides was identified by dark green colour formation.

To the plant extract few drops of glacial acetic acid, ferric chloride and conc. H\textsubscript{2}SO\textsubscript{4} are added and observed for a reddish brown coloration at the junction of the two layers and the bluish green colour in upper layer.25

RESULTS
The different plant extracts that were prepared from plants \textit{L. acidissima} and \textit{P. daemia} (Fig. 1 and Fig. 2) were subjected to phytochemical analysis for the presence of different bio-active compounds.
The amount of extracts obtained from chloroform, ethyl acetate and methanol of leaf, stem bark and root were 4.3 g, 6.5 g, 25 g, 4.5 g, 3.4 g, 10 g, 5 g, 6 g and 12 g respectively per 100 g of powder. More yield was obtained from methanolic leaf extract (25%) of L. acidissima (Table 1).

Table 1: Percentage yield of different crude extracts from L. acidissima.

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Solvent</th>
<th>Initial weight (g)</th>
<th>Yield of the extract (g)</th>
<th>Percentage of yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>Chloroform</td>
<td>100</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Ethyl Acetate</td>
<td>100</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>100</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Stembark</td>
<td>Chloroform</td>
<td>100</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Ethyl Acetate</td>
<td>100</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>100</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>Root</td>
<td>Chloroform</td>
<td>100</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Ethyl Acetate</td>
<td>100</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>100</td>
<td>12</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Table 2: Phytochemical investigation of L. acidissima in different extracts of Leaves, Stembark and Roots.

<table>
<thead>
<tr>
<th>Phytochemical constituent</th>
<th>Leaves</th>
<th>Stembark</th>
<th>Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>EA</td>
<td>M</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terpenoids and Steroids</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anthocyanidins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenolic compounds</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Coumarins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quinones</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Resins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

+ = Presence, - = Absence, C= Chloroform, EA= Ethyl acetate and M= Methanol

The amount of extracts obtained from hexane, chloroform and methanol of leaf were 15 g, 20 g and 25 g respectively per 100 g of powder. More yield was obtained from methanolic leaf extract (25%) of P. daemia (Table 3).

Phytochemical screening of the hexane, chloroform and methanolic leaf extracts of P. daemia showed the presence of various medicinally active constituents (Table 4). A total of 11 phytochemicals were analysed. The hexane extract of leaf showed the presence of one
compound, chloroform extract and methanol extract of leaf showed the presence of five compounds.

Table 3: Percentage yield of different crude extracts from *P. daemia* plant.

<table>
<thead>
<tr>
<th>Plant part</th>
<th>Solvent</th>
<th>Initial weight (g)</th>
<th>Yield of the extract (g)</th>
<th>Percentage of yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf</td>
<td>Hexane</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td></td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
<td></td>
<td>25</td>
<td>25%</td>
</tr>
</tbody>
</table>

Table 4: Phytochemical investigation of *P. daemia* leaf extraction.

<table>
<thead>
<tr>
<th>Phytochemical constituent</th>
<th>Hexane extraction</th>
<th>Chloroform extraction</th>
<th>Methanol extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids and Steroids</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anthocyanidins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenolic compounds</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coumarins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quinones</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Resins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycosides</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

DISCUSSION

Several studies have proved that the phyto-components present in a medicinal plant are widely responsible for the therapeutic potential of the plant. According to the World Health Organisation, medicinal plants would be the best source to obtain a variety of drugs.\[^{26}\] The results of phytochemical screening showed that the chloroform extracts of *L. acidissima* contain alkaloids, phenolic compounds, flavonoids, coumarins, resins and glycosides. Ethyl acetate extracts of *L. acidissima* contain terpenoids and steroids, phenolic compounds, coumarins and quinines. Methanolic extracts of *L. acidissima* contain alkaloids, saponins, terpenoids and steroids, phenolic compounds, coumarins, resins and glycosides. The present work is correlation with Pranita et al.,\[^{27}\] who analyzed almost all the parts of *L. acidissima* which is rich in phytochemicals. Petroleum ether, chloroform, acetone and methanol extracts of root, bark and leaf have shown the presence of alkaloids. All the solvent extracts of root, bark and leaf show the presence of carbohydrates except petroleum ether extract of root and bark. Chloroform extract of bark contains higher amount of glycosides. Protein is present in almost all the non-polar and polar solvent extracts of root, bark and leaves but not in chloroform extract of root and acetone extract of bark and leaf. Saponins and phytosterols were found in chloroform, acetone and methanol extracts of root, bark, leaf and petroleum ether extract of leaf. Petroleum ether extract of root, bark, leaf and only methanolic extract of leaf possessed fixed oils and fats. Phenolic compound and flavonoids were detected in petroleum ether extracts of root and leaf, chloroform, acetone and methanolic extracts of root, bark and leaf. Only petroleum ether extract of root, bark and chloroform extract of leaf has shown the presence of gum and mucilages.

Similar study has done by Pratima et al.,\[^{28}\] who reported the phytochemical constituents identified in *L. acidissima*. The study revealed that, petroleum ether extracts of leaf, stem and fruit contains proteins, tannins, terpenoids and flavonoids, methanol and aqueous extracts of leaf, stem and fruit contains alkaloids, flavonoids, terpenoids, carbohydrates and proteins which is in correlation with our study.

Similar work was done by Attarade et al.,\[^{29}\] who did phytochemical screening of leaf of *Limonia acidissima* extracted in petroleum ether, chloroform and methanol. It was observed that these extracts have shown the presence of steroid, terpenoids, high amount of phenolic glycoside, tannins and flavonoids which is in corroboration with our findings.

Thomas and Ponnammal\[^{30}\] had studied all the parts of *L. acidissima* which are rich in secondary metabolites. Among the identified constituents, alkaloid was higher in bark and rind when compared to the other parts. Saponins, steroids and glycosides were present in all plant parts. Flavonoids are present only in pulp and seeds. Phenols were found only in bark and leaves. Gum and mucilage is present in all the plant parts tested except leaf. Leaf, pulp and seed possessed fixed oils and fats. Resins are present only in pulp. Bark, leaf and seeds showed the presence of tannins. The study supports the present findings that leaf and stem bark consists of alkaloids, saponins, terpenoids and steroids, phenolic compounds, flavonoids, resins and glycosides.

The phytochemical screening of leaf of *P. daemia* shown the presence of flavonoids in hexane extract; alkaloids, terpenoids and steroids, tannins, flavonoids and glycosides in chloroform extract; alkaloids, saponins, terpenoids and steroids, tannins and flavonoids in
methanol extract. So the present work is supported by Karthikeyan[33] where methanolic extract of the leaf of P. daemia showed the presence of flavonoids, steroids, carbohydrates, alkaloids, tannins and terpenoids.

Similarly Sridevi et al.[32] observed the presence of flavonoid, tannins, alkaloids, glycosides, terpenoids, steroids and carbohydrates in ethanolic extracts of aerial parts (leaf, stem and flower) of P. daemia which confirms the present work.

Pravin and Akkewar[33] did the qualitative analysis of hexane extract leaf of P. daemia which has shown the presence of flavonoids which is in agreement with the present study. The chloroform extract of leaf shown the presence of glycosides, flavonoids, terpenoids, cardiac glycosides whereas in our investigation alkaloids were also observed. The methanolic extract of leaf shown the presence of alkaloids, tannins, reducing sugars, saponins and phlobatannins but in our study we observed the presence of alkaloids, saponins, terpenoids and steroids, tannins and flavonoids.

Madhuri and Navnathi[34] studied for phytochemical constituents in chloroform extract and methanol extract of stem P. daemia. The chloroform of stem has shown the presence of tannins, betacyanins and alkaloids but our study shown the presence of terpenoids and steroids, flavonoids, glycosides along with alkaloids and tannins. The methanol extract of stem consists of tannins, flavonoids, quinones, betacyanins, alkaloids, glycosides, terpenoids and phenols whereas in the present study we observed the presence of saponins along with tannins, flavonoids, quinones, betacyanins, alkaloids, glycosides, terpenoids and phenols.

Thus our study is in correlation with the peer researchers and our results confirm the earlier work. Hence, the plants L. acidissima and P. daemia have various secondary metabolites which indicates the therapeutic potential for different ailments.

CONCLUSION
Mostly plants play a major role in traditional medicinal system to combat several diseases. Generally plants have many phytochemicals like alkaloids, saponins, terpenoids and steroids, tannins, anthocyanidin, phenolic compounds, flavonoids, coumarins, quinones resins and glycosides with specialized properties. The plants screened for phytochemical analysis seemed to have the necessary facilities. I am highly thankful to the authorities of UGC, New Delhi for providing me financial assistance in the form of UGC-BSR fellowship.

REFERENCES

