ABSTRACT

Aim: To compare use of EC and DTPA for diuretic renography in evaluation of hydronephrosis. **Methods:** All patients with hydronephrosis on ultrasound during the period October 2009 to May 2012 were included in the study. They underwent DTPA diuretic renogram with F-0 protocol. Repeat renogram with EC was done after 48 hours. Parameters studied were isotope uptake, differential function, time activity curves with region of interest (ROI) over the kidney, T1/2, status of drainage in delayed images. **Results:** 32 children were studied during this period. They were aged 1 month to 11 years with a median age of 8 months. In 14 patients DTPA showed obstructive parameter/s while EC scan showed non obstructive parameter/s excluding obstructive hydronephrosis. In addition EC scan was more accurate in determining differential function in 6 patients in whom DTPA overestimated the function. EC scan also picked up other anomalies like duplex system, ectopic kidney, horseshoe kidney which were not noticed in DTPA. **Conclusion:** This study demonstrates that EC is more specific in diagnosing obstruction than DTPA, better at calculating split function and in addition detects certain associated anomalies.

KEYWORDS: hydronephrosis, EC, DTPA, diuretic renography.

INTRODUCTION

Hydronephrosis is the most common urinary tract anomaly in children, most of them being detected prenatally. Pelviureteric Junction (PUJ) obstruction requiring surgical intervention account for 15-20% of all hydronephrosis detected antenatally.

The postnatal management of fetal hydronephrosis is more or less standardized, the only point of debate being how to deal with those patients having likelihood of PUJ obstruction, investigations to use and indications for surgery.

Technetium tagged Diuretic renography is the standard investigation for evaluating patients with hydronephrosis, in diagnosing obstruction and evaluating split renal function on which decisions regarding surgery are usually based. Various molecules with different handling by the kidney have been used in this test and include, Diethylene Penta acetic acid(DTPA), Mercaptop acetyl triglycine(MAG3) and Ethylenedicysteine(EC).

The main problem of 99mTc-MAG3 is its high costs, which may hinder its use in the clinical practice in many countries.

The most used radiopharmaceutical for diuretic renography in many countries is 99mTc-DTPA. The main advantages of 99mTc-DTPA are ease preparation of the kit, availability and low cost, but it is a slow, filtered agent with an increasingly poor target-to-background ratio in decreasing renal function that can make processing difficult, with curve forms and diuretic responses less immediate. The main practical problem of using 99mTc-DTPA is the high rate of indeterminate or possible false-positive results for obstruction attributable to reduced renal function or severe kidney dilation.

99mTc-EC is a renal tubular radiopharmaceutical based on the diaminodithiol ligand (N2S2) recently available. This radiopharmaceutical is a diacid derivative of the brain tracer 99mTc-ECD (ethylendicysteine diethyl-ester labeled with technetium-99m).
99mTc-EC has been used as a substitute for 99mTc-DTPA, with apparently more accurate results.

However, it is not clear if there is real clinical advantage of using 99mTc-EC instead of 99mTc-DTPA in obstructive renal disease, especially in patients with reduced renal function or severe kidney dilation in which there is a higher probability of indeterminate or false-positive results for obstruction.

The aim of this study is to compare the excretion of 99mTc-EC and 99mTc-DTPA after furosemide injection, using exactly the same image protocols in patients with indeterminate or possible false-positive results for obstruction attributable to reduced renal function or severe dilation.

MATERIALS AND METHODS

PROCEDURE[9]. Patient Preparation-If the patient is not going to receive intravenous fluids, oral hydration is encouraged before arrival and while in the department. Oral fluids in the range recommended for intravenous administration are appropriate.

Preparation before injection of the radiopharmaceutical-The procedure is explained to parents and all children old enough to understand. Parents can remain and help with the examination if their presence is beneficial. Continual communication and reassurance with explanation of each step is essential for cooperation and successful intravenous injection of the radiopharmaceutical and catheterization of the bladder.

An indwelling venous catheter is inserted to maintain sufficient hydration for a good diuretic effect. For the administration of the diuretic at the time of tracer injection (F0), a 21- or 23-gauge butterfly needle is used for the simultaneous injection of the radiopharmaceutical and the diuretic and may be removed after the injection. Sterile urethral catheterization should be performed with the largest sized Foley or feeding catheter that will comfortably pass the meatus French 8 for most patients and French 6 for infants. A French 8 feeding catheter may also be used for continual bladder drainage.

Continual drainage by catheterization of the bladder may be required in patients with hydrourereter, vesicoureteral reflux, a neuro-pathic bladder, a small-capacity bladder, a dysfunctional bladder, or posterior urethral valves.

The review of available past radiographic, ultrasound and radionuclide studies adds to the accuracy of interpretation of the current study.

Precautions

The examination table is covered with plastic-lined absorbent paper to contain spilled tracer and reduce contamination of the table during drainage and catheterization.

Radiopharmaceutical

99mTc-diethylene triamine pentaacetic acid (99mTc-DTPA) is a glomerular agent. The biologic half-life is less than 2.5 h and 95% of the administered dose is cleared by 24 h. The recommended administered dose is 3.7 MBq (100 mCi) per kilogram of body weight (minimum, 37 MBq [1 mCi]).

EC is a tubular agent. Renal scintigraphy was performed after the intravenous injection of 4.2 MBq/kg (0.12 mCi/kg) of 99mTc-EC.

Acquisition Protocol of the Renal Scintigraphy-scinctigraphy was performed using a scintillation camera equipped with a low-energy all-purpose collimators.

Processing and Analysis

1. From the dynamic renal study, careful evaluation of the parenchymal phase reveals renal function, size and position. Cortical transit time and dilatation of the collecting system may be examined in the excretory phase (initial 2–4 min).
2. Baseline images of the diuretic phase are used for assessment of the diuretic effect.
3. Cinematic viewing of the diuretic phase assesses patient movement. If there is considerable patient motion, regions of interest around the collecting systems of individual frames will have to be compared at various intervals of the study to assess drainage.
4. Regions of interest are drawn around the dilated pelvicalyceal system for curve analysis and calculation.
5. The diuretic T1/2 is the time at which the time–activity curve decreases to half its maximal activity.

Interpretation Criteria

1. The diuretic effect usually begins within 1–2 min after the administration of the diuretic.
2. In the absence of obstruction, rapid and almost complete washout of the radiotracer occurs before injection of diuretic. However, if function is decreased, there may be slow emptying of the kidneys.
3. Obstructed systems can result in delayed drainage from the collecting system. The amount of activity proximal to the obstruction can also increase over time.

With the injection of the diuretic after the radiopharmaceutical, a T1/2 less than 10 min usually
means the absence of obstruction and a T1/2 greater than 20 min usually identifies obstruction. A T1/2 with a value between 10 and 20 min is an equivocal result. These T1/2 measurements are applicable to neonatal hydronephrosis. The natural history of neonatal hydronephrosis is variable. Drainage may gradually improve or worsen. Therefore, follow-up examinations are usually necessary. These T1/2 values refer to kidneys with normal or near-normal function. Kidneys with reduced function may have prolonged T1/2 values without obstruction.

With the simultaneous injection of the radiopharmaceutical and furosemide (F0), a T1/2 greater than 20 min is compatible with obstruction. In cases, however, of extrarenal pelvis, nonobstructing pelviectasis and megaureters of long standing and particularly post-operative patients with residual dilatation of the collecting system, the possibility of obstruction is studied mainly by observing the cortex and the cortical graphs. When the cortical graphs are normal and the cortices appear empty, then there is no obstruction, even if the curves of the total kidneys have a T1/2 greater than 20 min. The F0 study should therefore be interpreted not only for the behavior of the collecting system but also for the behavior of the cortex of the kidney in question.

If the renogram of the entire kidney is upsloping continuously, such patients often require surgery.

Patients with a downsloping curve usually compensate and do not need an immediate operation, but follow-up. Patients with a horizontal graph need close observation because some of them require surgery.

Reporting

1. The procedure, date of the study, activity and route of administration of the radiopharmaceutical and a previous study for comparison are included.
2. The history includes symptoms or diagnosis.
3. The technique includes catheter size and type if implemented, amount and kind of intravenous fluid if administered, the imaging sequence, the amount and time of diuretic administration and the urine volumes before and after the diuretic, if measured.
4. The findings may include renal perfusion, split renal function, transit times and the T1/2 of collecting system emptying after the diuretic.

All patients with hydronephrosis on USG were subjected to DTPA and EC renogram with a gap of 48 hours

- Prospective study
- Period-Oct 2009 to Aug 2011

RESULTS

- N=32
- M:F=28:4
- Age: 1 month to 12 yrs
- Median age- 2 months

MASTER CHART

<table>
<thead>
<tr>
<th>Sr no.</th>
<th>Age/sex</th>
<th>Diagnosis</th>
<th>Differential function-DTPA</th>
<th>Differential function-EC</th>
<th>Advantages of EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1yr/boy</td>
<td>b/l HDN</td>
<td>49.8 50.2 pujo pujo</td>
<td>48 52 no obstruction</td>
<td>Clearance not documented on DTPA images on RK EC ruled out obstruction</td>
</tr>
<tr>
<td>2</td>
<td>9yr/boy</td>
<td>R(HDN)</td>
<td>62.9 37.1</td>
<td>65.1 34.9</td>
<td>EC rules out obstruction on Rt</td>
</tr>
<tr>
<td>3</td>
<td>1m/boy</td>
<td>L(HDN)</td>
<td>50 50 pujo pujo</td>
<td>49 51 non-obstructive</td>
<td>EC ruled out obstruction</td>
</tr>
<tr>
<td>4</td>
<td>1.5m/m</td>
<td>L(HDN)</td>
<td>50 50 pujo pujo</td>
<td>45 55 delayed, non obstructive</td>
<td>EC ruled out obstruction</td>
</tr>
<tr>
<td>5</td>
<td>1.5yr/m</td>
<td>b/l(HDN)</td>
<td>59.8 40.2 pujo pujo</td>
<td>49.2 50.8 (49+51) pujo pujo</td>
<td>EC picked up duplexes on Lt side. DTPA overestimated LK function</td>
</tr>
<tr>
<td>6</td>
<td>10m/boy</td>
<td>R(HDN)</td>
<td>50 50 pujo</td>
<td>53 47 delayed/non-obstr</td>
<td>EC ruled out obstruction</td>
</tr>
<tr>
<td>7</td>
<td>11yrs/boy</td>
<td>L(HDN)</td>
<td>49 51 pujo</td>
<td>49 51 delayed excretion</td>
<td>EC ruled out obstruction. DTPA image clearance is not well documented.</td>
</tr>
<tr>
<td>8</td>
<td>1m/m</td>
<td>R(HDN)</td>
<td>58 42 pujo</td>
<td>76 24 pujo</td>
<td>RK overestimated in DTPA. Images are better with EC despite less administered dose</td>
</tr>
<tr>
<td>9</td>
<td>2m/m</td>
<td>R(HDN)</td>
<td>49 51 pujo</td>
<td>49 51 non obstructive</td>
<td>EC picked up horse shoe kidney(lower poles medially rotated)</td>
</tr>
<tr>
<td>10</td>
<td>1yr/m</td>
<td>L(HDN)</td>
<td>47.9 52.1</td>
<td>54 46</td>
<td>Picked up duplex on LK,</td>
</tr>
</tbody>
</table>
Comparative graphs of DTPA and EC scan in respect to time activity curve, delayed static images, split function of some patients are shown below.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Side</th>
<th>DTPA</th>
<th>EC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>6m/f</td>
<td>b/l(HDN)</td>
<td>38.3</td>
<td>61.7</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>12</td>
<td>1m/m</td>
<td>L(HDN)</td>
<td>58</td>
<td>42</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>13</td>
<td>1m/m</td>
<td>R(HDN)</td>
<td>53</td>
<td>47</td>
<td>redundant pelvis</td>
</tr>
<tr>
<td>14</td>
<td>7yr/f</td>
<td>R(HDN)</td>
<td>60</td>
<td>40</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>15</td>
<td>2m/m</td>
<td>L(HDN)</td>
<td>47.8</td>
<td>52.2</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>16</td>
<td>1m/m</td>
<td>L(HDN)</td>
<td>46.3</td>
<td>53.7</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>17</td>
<td>2m/m</td>
<td>b/l(HDN)</td>
<td>41</td>
<td>59</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>18</td>
<td>2y/m</td>
<td>L(HDN)</td>
<td>44</td>
<td>66</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>19</td>
<td>2yr/m</td>
<td>R(HDN)</td>
<td>94.9</td>
<td>5.14</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>20</td>
<td>11m/m</td>
<td>R(HDN)</td>
<td>59</td>
<td>41</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>21</td>
<td>6m/m</td>
<td>b/l(HDN)</td>
<td>50</td>
<td>50</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>22</td>
<td>2m/m</td>
<td>b/l(HDN)</td>
<td>44</td>
<td>56</td>
<td>pujo partial pujo</td>
</tr>
<tr>
<td>23</td>
<td>12yr/m</td>
<td>R(HDN)</td>
<td>44</td>
<td>55</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>24</td>
<td>4m/m</td>
<td>L(HDN)</td>
<td>17</td>
<td>83</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>25</td>
<td>6m/m</td>
<td>L(HDN)</td>
<td>50.3</td>
<td>49.7</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>26</td>
<td>1.5yr/m</td>
<td>L(HDN)</td>
<td>48.7</td>
<td>51.3</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>27</td>
<td>8m/m</td>
<td>L(HDN)</td>
<td>55</td>
<td>45</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>28</td>
<td>8m/m</td>
<td>R(HDN)</td>
<td>48.2</td>
<td>51.8</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>29</td>
<td>3.1yr/m</td>
<td>L(HDN)</td>
<td>36.2</td>
<td>63.8</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>30</td>
<td>1yr/f</td>
<td>L(HDN)</td>
<td>Not seen</td>
<td>100</td>
<td>pujo no pujo</td>
</tr>
<tr>
<td>31</td>
<td>13m/f</td>
<td>R(HDN)</td>
<td>94</td>
<td>6</td>
<td>pujo pujo</td>
</tr>
<tr>
<td>32</td>
<td>6m/m</td>
<td>L(HDN)</td>
<td>42.2</td>
<td>57.8</td>
<td>pujo pujo</td>
</tr>
</tbody>
</table>
Time Activity Curves.

DTPA

- **Left:** 49.0
- **Right:** 51.0
- **Total:** 100.0

- **Kidney Counts (cpm):** 5031.7, 5242.0
- **Total:** 10273.7

EC

- **Left:** 48.7
- **Right:** 51.3
- **Total:** 100.0

- **Kidney Counts (cpm):** 9877.3, 10400
- **Total:** 20277.3

Delayed static images.

DTPA

- **2 Hours:**
 - Left: Image
 - Right: Image

EC

- **3 Hours:**
 - Left: Image
 - Right: Image

Curves & Delayed static images

Split Function.

DTPA

- **Left:** 49.4
- **Right:** 50.6
- **Total:** 138.6

- **Kidney Counts (cpm):** 6949.3, 7017.9
- **Total:** 13967.2

EC

- **Left:** 49.3
- **Right:** 50.7
- **Total:** 100.0

- **Kidney Counts (cpm):** 4135.4, 4256.7
- **Total:** 8392.1
In our study EC, showed following findings

- Rule out obstruction - 14 patients
- Detected duplex - 4 patients
- Detected horseshoe kidney in 2 patients
- More accurate function (over estimated in DTPA) - 6 patients
- Showed kidney in one patient wherein DTPA failed to show in early images (megahydronephrosis)
- Better depiction of images in all patients

DISCUSSION
- L.L-ethylenedicysteine (EC) is a new carrier of technetium Tc 99m (99mTc) with a lower affinity to plasma albumin in comparison with diethylenetriamine pentaacetic acid (DTPA).\(^7\)
- Renal clearance half life was shorter
- Results were similar in uraemic patients (s.creat>2mg)
- Less radiation-useful in children
- Better depiction of image
- EC is better in excluding obstruction presenting less false positive and indeterminate results.
- EC lyophilized kit is that its labelling with Tc99 is easy and rapidly obtained at room temp, remains stable upto 6 hrs
- High renal to background contrast and more accurate delineation of cortex to pelvis is possible
- Accurate assessment of split function
- Clearance can be commented when function is moderately impaired (split function is 20-35%) can be done in gross hydronephrosis and kidneys with poor renal function where other radionuclide scans are contraindicated.
- Extraction efficiency is good (>50%)
- Information on cortical outline is possible

CONCLUSIONS
In this study, EC was more effective than DTPA\(^8\) in
- Excluding obstruction
- Better depiction of split function and images
- Detecting associated anomalies
- Helpful in gross hydronephrosis

REFERENCES
6. From the Division of Nuclear Medicine, Department of Radiology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; and Division of Urology, Department of Surgery, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil. Ambulatory and office urology.
11. Hossein Shahrokh, Mansour Movahhed, Mohammad Ali Zargar Shoshtari, Amir Mohammad Orafa, Sepideh Hekmat, Department of Urology, Hasheminejad Hospital, Iran University of Medical Sciences, Tehran, Iran- Urology Journal UnRC/IUA, Spring 2006; 3(2): 97-103.