REVIEW OF ARTHROPODS AND THEIR ROLES IN MEDICAL AND NUTRIENT VALUES IN THE WORLD

Faranak Firoozfar*1,2, Seyed Hassan Moosa-Kazemi3, Hassan Vatandoost3, Fatemeh Mohtarami3, Abbas Bahrami4

1Department of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
2Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
3Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
4Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.

*Author for Correspondence: Faranak Firoozfar
Department of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.

ABSTRACT
Arthropodes are very important in human societies. Human exposed to pathogen and non-pathogenic agents all over the history and has used lots of methods for the control and treatment of such diseases. Maggot therapy is one of such measures. This article is a review one several aspects of arthropods roles in medical and nutrient values in the world. The related investigations were searched from websites and reliable published texts. Different databases were explored based on appropriate key words. Several arthropods and their products have been used for food, decoration and treating different diseases such as immunosuppressive diseases, allergy, diabetics, audit, pulmonary and nervous, cancer, psychiatric, dermatosis, Parkinson, alzheimer and cancer. This review article will introduce some arthropods and their roles in Medical and nutrient values in related to economic, health and treatment of some human societies in the world.

KEYWORDS: Arthropod, Medical, Nutrition, Maggot therapy, Cancer.

INTRODUCTION
Biological toxins produced by organisms to kill or harm other living beings are produced toxicological and pharmacological effect of both effects, including abundant natural resources of new compounds that may be used as a background material for the design of drugs anticancer is considered in the future. Currently, many active principles biotoxins produced by Hodder development of new drugs to treat diseases such as cancer which is used for. The difference in the structure and composition of biotoxin would provide valuable ideas for the production of anti-tumor drugs.

Bees branch of arthropods and insects that category when the sting causes pain and subsequently with severe damage and may even cause the death of many vertebrates and humans to cause the insects to have a combination tubers out fine produce and inject venom are known. The complex combination of biochemical and physiological mechanisms that lead to the creation of beings is the goal. Insecticides not only a defense mechanism but it is also used for anesthesia and death bai in addition to the role of these compounds have been studied for some human diseases.

Although bee stings may cause serious problems to human health but effective biological compounds such as biogenic amine and immune system-activating peptide in bee venom has been proved. Recently, anti-cancer potential of bee venom has been studied. Moradi et al 2013 was reported, honey, sting, pollen, royal jelly, propels, and wax are products that have used for treating different diseases such as blood diseases, allergy, diabetics, pulmonary and nervous disease, audit, eye, immunosuppressive diseases, cancer, psychiatric, dermatosis, shagas and malaria, and virus and giardia borne diseases.

Peptides lyases of tumor cells up to 50 times are more sensitive than normal cells. Polybia-MPI significantly inhibits the proliferation of tumor cells and can by disrupting the cell membrane structure Nfz Tvhhsans and death of cancer cells will bring. Lactat dehydrogenase (LDH) release in non-cancerous cells, fibrous blast is negligible. The researches showed that polybia-MPI is relatively less effect on normal cells and by choosing targeted cancer cells and destroy them. In another study, were identified anti-cancer molecules
of Vespa simillima venum, quinone, 7, 8-seco-para-
ferruginone (SPF). This compound has killing effect on
cancer cells in the rat liver Fujiwara et al. (2008) was
reported the potential anti-cancer effects of bee venom
in the preliminary stage of cancer cell. [5]

Bee scientific name of Aphis melifera of the order
Hymenoptera has the social lives. [6,7] Honey product
from bees that has products from around 5,000 years ago
and used for treatment of wounds and burns. [8,9]
Historical evidence shows that honey was discovered
from about 2000 years before bacteria in the treatment
of infected wounds. [10,11]

So that the contents of an Egyptian papyrus from 3500 to
the year before shows that honey used for to treatment of
wounds of gastrointestinal, eye and kidney.11 In 50 BC
Pedanius Dioscorides was used honey as a medicine to
treat old wounds. [10,11]

Avi Sina has been used the honey bee for healing
burns. [10] In the Quran, in Surah Nahl verses 69 and 68
and Sura Muhammad, page 15 verse referred to the
healing power of honey. [11-13]

Cancer is a major health problem considered in the
worldwide. Since the disease distributed with high
mortality around the world, it is necessary find an
emergency rate of treatment. At the present there are
some treatments methods such as radiation therapy,
surgery, chemotherapy, and stem cell hormone
therapy. [14]

Chemotherapy used for treatment of the diseases but we
need to the development of new strategies for the use of
anti cancer biological agents. In this regard, anti-cancer
drugs produce from natural sources may be more
effective than conventional chemotherapy drugs. [15]

Currently, many researchers around the world are found
more toxic compounds that have anticancer effects. Fire
ant venom through its bite necrosis, which contains the
alkaloid compounds, was used for paralyzed of prey. Fire
ants can bite and sting, they cause allergy, purulent boil,
that remain for 24 hours. Special mound nest was formed
during a period of 5 months after the establishment of the
colony. A mature colony can produce new 4500 queen
during the year. Venom of fire ants, solenopsis species
has effect on cancer cell. [16]

Many peptides isolated from spider venom, such as U-
ACTX -1 U- ACTX-2 -, and Protoxins I and II are
responsible for blocking calcium ion channels.
Thrixopelma pruriens, which considered as the blocker
of Nath channel and prevents the proliferation of cancer
cells. [17]

The effects of spider venom Macrothele raven (Araneae,
Hexathelidae) at doses of 10, 20 and 40 mg per liter were
confirmed on the proliferation of human cervical cancer
cells (HeLa) by both vivo and in vitro methods. [18] The
injection of poison of these spiders to naked mice (nude)
subcutaneously will stay small skin tumor size compared
with the control group. In addition, intravenous
administration of spider venom was inhibits growth of
human breast cancer cells from MCF. 7. [19]

A similar study the effects of anti-cancer compounds of
Psalmotoxin 1, the venom of the spider species,
Macrothele raveni have been reported against the
malignant glomas tumor. In addition, growth inhibition
effect of the venom has been reported on human
hepatocellular carcinoma BEL-7402 cells. [20]

Insects and arthropods important play role in traditional
medicine in many countries, especially in South-East
Asia. At the present is located the traditional medicine
market in South Korea. Only 17% of the product types
are known as the drug, for the treatment of human
arthritus and fungal diseases. Silk moth larvae are used
for the treatment of stroke. Many traditional medicines
derived from arthropods traditionally collected and some
imported from China. In many countries, people are
merging modern scientific medicine with traditional
medicine. Traditional Chinese medicine is similar to the
Southeast Asian country, but the country has its own
traditions.

So far, numerous articles and books have been published
in relation to benefit of arthropods due to medicinal and
nutrient values of insects. [21,22] The value of imported
arthropodes to South Korea was increased and reached to
$ 1,850,137 in 1992. [23]

Mantis eggs used to stimulate and strengthen human
sexual behaviors, especially in men the remaining wild
bees and their nest is used for the treatment of infected
wounds. [24] The extract mole cricket, larvae of beetle
scarab and cicada nymphs used to treat the bacterial and
fungal wound. [25] Cicada pupae traditionally used to treat
hearing problems and throat inflammation. [26]

Usually poison of bees, scorpions and hexapoda was
used as defend against enemies, as well as paralyzing
their prey. [27] Similarly, insects, such as cricket’s striped
soil, scarab beetle larvae, and nymphs of the field Cicada
used for the treatment of fungal infections. Ants are
major role in treat the fungal and bacterial wound
healing. [26]

Aquatic beetles, triunguinctus Cybister have phenolic
compounds with anti-microbial and anti-fungal
effects. [28,29] Usually larvae of moth, Heapiulis species
Beauveria bassiana that infected with the fungus, C.
sinensis, was used for stroke treatment. [30]

Firooz far et al 2012 was reported total of 89 flies (55
females and 34 males) were collected from Hashtergd area,
central Iran. In the first generation, 299 flies were
produced in the laboratory including 105 (35.12%)
males, and 194 (64.88%) females. The female/male sex ratio was reported as 1.61 for parents, whereas it was 1.84, 1.30 for F1 and F2 generations respectively. In total, 432 flies were reared in F3 generation including 173 (40.04%) males, and 259 (59.96%) females, and the sex ratio was reported as 1.49. Fly larvae of Lucilia sericata were reared and used for healing chronic wounds after surgery.\[31\]

In the same study, A total of 218 flies were collected in three rounds of sampling from the field of Tehran and Karaj Counties, central Iran. The female/male of parent ratio was calculated as 1.72 in Tehran and in Karaj areas, whereas it was 2.20% and 1.81%, respectively in F1 and F2 generations, respectively. This procedure used for preparing of maggot to treatment of infected wound. This method is comparable to the conventional methods of treatment in modern medicine.\[32\]

Royal Jelly is used to treat symptoms of menopause. Bee and ant venom used to treat joint swelling and is effective in patients with rheumatoid arthritis. Brown resinous substance like wax in the hive by bees, is effective for the treatment of ulcers and gastritis. Honey and other bee products have strong antimicrobial effects. Honey from ancient times to treat some diseases and have been used for healing.

However, the emergence of antibiotic resistant strains of bacteria have been confusing to use of anti bacterial grugs. Brown resinous substance like wax of bee venom has killing effect on bacteria. This is probably due to the present of Flavinoid material in bee venom. Uses of the products of the hive are suitable for wound healing.\[33\] Honey has antibacterial plant compounds. Seems to be alive and safe Clostridia spores have been involved in this practice.

The antibacterial effect of brown resinous substance in bee venom was investigated. *Apis mellifera*, and *Tetragonisca angustula* venom have killing effects on *Staphylococcus aureus* and *Staphylococcus aureus*. Minimum Inhibitory Concentration of honey produced by the species of *A. mellifera* was reported range as 23.126 to 70.185 mg/ml and for *T. angustula* was reported as range 142.87 to 214.33 mg/ml. The minimum inhibitory concentration of brown resinous of *A. mellifera* was reported in the range of 0.36 to 3.65 mg/ml and for *T. angustula* as range 0.44-2.01.

The brown resinous substance like wax, the highest antibacterial activity against *Staphylococcus aureus* was compared to honey. However, both wax and honey-like brown resinous substance with antibacterial are activity against *Staphylococcus aureus*.\[34\]

Baculoviruses a rod-shaped virus that is divided into two genera: nucleopolyhedroviruses (NPV) and granuloviruses (GV). While GVs contain only one nucleocapsid is the virus envelope, NPVs of two units (SNPV) or the (MNPV) nucleocapsids. Most of the virion is surrounded by Granvlyn GVs and poly dimenhydrinate NPVs. Baculoviruses with more than 600 species of invertebrates known viral host. Larvae of moths and butterflies immature species are the hosts of the virus. But among mosquitoes, flies and even shrimp have also been identified. The virus among humans and other mammals and reptiles can not be seen. Baculoviruses have 80 to 180 kbp, double-stranded DNA.\[35\] The aim of new research about viruses is the developed product in the interests of human nature by inserting the data of new propein in gene of baculoviruses through the genetic engineering.

Alzheimer's disease considered as nervous system disease occurs almost in old age and characterized by symptoms of almost in the memory and cognitive abilities generally. The most pathological features of the disease is atrophy of the hypocampus, the cortex, the anterior brain, forontal cerebral cortex in the formation of plaques of beta-amyloid and tangles of nerve that will increased in the APP, PSN-1/2, TAU genes by mutations.

METHODOLOGICAL TRENDS

This article is the result of a study and review of the literature related to the topic in scientific texts and websites. In this regard, the appropriate key words used in relation to traditional medicine and nutrient values.

RESULT AND DISCUSSION

Humans have consumed arthropods for many years. At least 1 400 species have been recorded as human food. There are scatter data due to eating insects in the human societies, but some data indicated to vital and preferred food and an essential source of protein, fat, minerals and vitamins. In both rural and urban societies of some developing countries, insects are source of food and published the essential elements that human need to growth and development. The percentage of Protein and amino acid content in some edible insects was shown in Table 1. The mean maximum of protein was reported in orderodonata and the mean minimum was mentioned in order ortoptera. The mean maximum of amino acid was mentioned as 48.72 on Hemiptera and the mean minimum was mentiond as 32.88 in Lepidoptera. In essential amino acid, the mean maximum was reported as 18.65 in Hemiptera and the mean minimum was mentioned as 13.92 in Lepidoptera (Table 1).

Table2 was shown the Percentage of Fatty acids, saturated and unsaturated in edible insects. The mean maximum of saturated faty acid was reported in *Schistocerca gregaria* (Forska) male adult as 40.3 and the mean minimum was mentioned in *Rhynchophorus phoenicis* (Fabricius) as 0.3. The mean maximum of unsaturated amino acid was mentiond as 62.44 on *Polyrhachis dives* Smith and the mean minimum was mentiond as 0.65 in *Macrotermes annandalei*.

Table 1.

<table>
<thead>
<tr>
<th>Insect Order</th>
<th>Max Protein</th>
<th>Min Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera</td>
<td>48.72</td>
<td>32.88</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>18.65</td>
<td>13.92</td>
</tr>
</tbody>
</table>

Table 2.

<table>
<thead>
<tr>
<th>Fatty Acid Type</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td>40.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Unsaturated</td>
<td>62.44</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Table 3 was shown Percentage of Lipid in edible insects. The mean maximum of Lipid was reported in order Hemiptera as 30.43 and the mean minimum was mentioned in order Lepidoptera as 4.74.

Percentage of Carbohydrate in edible insects was shown in Table 4. The mean maximum of carbohydrate was mentioned as 8.20 on Lepidoptera and the mean minimum was mentioned as 2.17 in Hemiptera.

Table 5 was shown some edible element content of insects based on the Percetage of dry weight. In essential amino acid includes; Phosphorus, Magnesium, Iron, Zinc, Copper, Magnesium, Calcium, Sodium, and Potassium.

Active compounds were produced by animals, plants and microorganisms used in the development of new drugs to treat diseases such as cancer. Poisonous arthropods, like scorpions, bees, wasps, spiders, and ants have active molecules that effect on physiology of human cell. This compounds on these venom have great potential in animal tumor control.\[1\]

One of the molecules in the insect venom is mastoparan, amphipathic molecules containing 14 amino acid peptides effects on increasing the permeability of mitochondria in cancer cells and subsequently to inhibit the growth of cancer cells. The release of cytochrome molecule CIN has prevented the development of human chronic myelogenous leukemia.\[2\]

Polybia-MP-II and Polybia-MP-III peptides isolated from bee venom prevents lysis of human red blood cells and Polybia-MPI is killing effect on tumor.\[36,37\] MPI belongs to a family of antibiotics peptides that targeted on non-polar lipids cell membrane, and development the ion permeable channel surface, resulting in depolarization, irreversible cell lysis and death of cancer cells.\[3\]

The release of LDH (lactate dehydrogenase) considered as a pre-cancer substrate has been demonstrated in human bladder cancer cells, Biu87, EJ, prostate cancer, PC-3 cells and also human umbilical vein endothelial cells (HUVEC). The secretion of LDH in the normal of the blast fibrous and non-cancerous cells is very low. The researches showed that polybia-MPlis relatively less effect on normal cells and by choosing targeted cancer cells and destroy them.

Venom of fire ant, Solenopsis invicta have alkaloids that inhibit the phosphorylation of Akt-1 in the amino acids tyrosine 308 and serine 473. The mouse embryonic fibroblast prevents the development of cancer. Inhibition of Akt may lead to the development of anti-cancer drugs in the future.\[38\]

The structure of a bee venom of Vespa simillima, were identified that effects on cancer cell. The molecules, quinone, 7, 8-seco-para-ferruginone (SPF), prevent the proliferation of cancer cells in the rat liver \[4\] In addition the cancer cells resistance to chemotherapy drugs and this route of treatment often led to serious adverse events.\[39,40\]

Phospholipase - D is released from the venom of brown spider, which causes rapid lysis of red blood cells and inhibition of blood cancer.\[41\] Hyaluronidase of the spider venom also increases tissue permeability and subsequently disappearance of the tumor.\[42,43,44\] Installation of oxyopinin, from venom of wolf spider increased permeability of the lipid membrane of cancer cells and cause their death.\[45,46\]

Pancratistatin (PST) in the venom of the spider Pancratium littorale has effect on cancer human neuroblastoma cells (SHSY-5Y), human lymphoma (Jurkat) and breast cancer (MCF-7). Although anti-tumor effects of these compounds were well known, but the compound did not have an adverse effect on normal cells.\[47-49\] Antitumor activity of gomesin, The strong antimicrobial peptides isolated from hemolymph spider of Acanthoscurria gomesiana was examined in both vitro and in vivo assay. PST Ointment in the treatment group to inhibit the growth and proliferation of cancer cells among the B16F10-Nex2 mice compared to the control. In addition, cytotoxic effects of this compound was reported on tumor endothelial cells (HUVECs) compared with the control group.\[50\]

Cantharidin is derived from the bodies of blister beetles for the treatment of warts and used Molluscum Contagiosum.\[51\] in addition to honey, brown resinous substance like wax, royal jelly and bee venom have anti-bacterial activity known.\[52\]

Some members of calliphoridae family, and the species of cochliomyia hominivorax that cause myiasis is medical important. In maggototherapy used the species of Lucilia sericata and Phormia regina maggots. The Species of the Calliphora vicina, Chrysomyia nufsiacies, Lucilia Caesar, L.cuprina, Lilluster, Phormia regina, from family Calliphoridae and the species of Wohlfahrtia nuba from sarcophagidae are mostly used in Maggoterapy.

Honey has high permeability and moisture in wound healing and helps skin repair, moisture honey from pain and prevent cell destruction during dry dressing and changes the growth of blood vessels and stimulates monocytes.\[41,45,33\]

Treatment of diabetic ulcers: study on the treatment of diabetic foot ulcers with local honey and olive oil has been administered. The 55-year-old man with a 12 year history of type 2 diabetes in the leg 2 x 2 with the size and depth of 4 cm was treated with penicillin 6.3.3 and betadine lavage treatment was not achieved, with a mixture of honey and olive oil at 40 °C for 5-7 minutes,
the mixture was treated, the patient's wound 5 days after treatment with granulated honey and fully recovered after one month. Also, up to 2 weeks after treatment no observed recurrence.[54] In another study in Iran, a randomized clinical trial was carried out and were examined the effect of topical treatment of honey after surgery in 24 cases of pilonidal sinus. In treated group, wound was clear, odorless, non-purulent discharge and also cell culture was negative. Whereas, in the control group that daily washing with soap and warm water wound of secretion was very bad smell and using the results of cell culture.[55]

Insects are as a food source. The insects e protein content are 20 to 70%, amino acids 30 to 60%, fat 10 to 50%, fatty acids, carbohydrates, 2 to 10%, and also various of minerals, vitamins and other elements of improvement of human health. Insects represent significant sources of energy in the earth that are still not fully used globally.[56,66] In China, consumption of various insects such as ants, termites, worms, moths and butterflies were 3000-year history.[57,67] The history of insects in China was published.[56,57,65,66] Human body needs protein and amino acids, enzymes, hormones and hemoglobin, antibodies of edible insects to produce nitrogen for the balance of acid and alkali, conversion and transport of important genetic information.[56,66,69,61,64] The egg, larva, pupa, and adult of class insects are varies between 20–70 percent crude protein. One-day larvae of Ephemeroptera are 66.26% crude protein. The larvae of Anizoptera is 40–65%, in the eggs and larvae of Zygoptera 40–57% crude protein, Coleoptera larvae have 42–73% and in , Coleoptera larvae have 23–66% and in Lepidoptera have 20–70% crude protein. The amount of protein in larval bees, wild bees, ants and other Hymenoptera was reported as ranged 38–76%. \textit{Ephemera} \textit{iianghongensis} (Ordered Lepidoptera) larvae have a 66.26% and \textit{Sphaerodema rustic}a 73.52% protein. Insect protein is more than the plant.

More than 20 types of amino acids presented in human proteins. Eight of them belong to the basic amino acids and about 100 types identified in edible insects, 10–30% are essential amino acid and 35–50% can provide to essential humans amino acids.[68]

Fat is an important component of the human body and in the role of storage and supply of energy and involved the protection of different organs. Fat can also help to absorption of vitamins, phosphate, carbohydrate and cholesterol and supporting many components of tissues and cells as well as involved in combination with protein. This combination is useful for the human brain and liver, reducing blood fat, cholesterol and promoting safety as well as premature aging of skin cells. Fatty acids are divided to saturated and unsaturated fatty acids. Unsaturated fatty acids is useful and can be development of human, protect the skin and help reduce the formation of blood clots and clotting platelets.[68] Most species of edible insects are rich unsaturated fat acid. \textit{Oxya chinensis} species are contains 2.2% fat whereas \textit{Ostrinia furnacalis} with 46.08% and Pectinophora gossypella 48.49% of the fat. The highest percentage of fat in the larvae and pupae was reported in \textit{Musca domestica}, \textit{Dendrolimus houi}, and Chilo \textit{Fuscidentalis} respectively. It should be noted that the amount of fat in the adult stage insects are less than in larvae and pupae stages. Vitamins are a group of organic compounds that are essential for the metabolism of the human body. Since the vitamin is not produced in the human body, must be absorbed by food. The vitamins in edible insects are low and not enough. According to recent studies, insects have carotene, vitamin B2, B6, D, E, K, A, B1, C.[66,69-70]

Carbohydrates are the most important nutrients in the human body. Their main source of protein intake and decrease body heat and can help to detoxification of toxins.[68] The amount of carbohydrates in the insect body is varies between 1-10%. Mites on tea plant have range 16-27%. Polysaccharides are the structure of carbohydrate that increases the human body's immune function.[72]

Chitin is a macromolecular compound and considered as very high safety and nutritional value. Chitin can be used to stop bleeding, prevent blood clotting and wound healing and produce cosmetics. The silkworm moth pupae was reported as 5 to 15% and dried to the 73.3% and the last pupal stage as 55.5%. Chitin in pupal stage of \textit{Dendrolimus houi} is 47.7% and in adult stage was reported as 83.17%.[66,68]

Table1-Protein and amino acid content in some edible insects (Percentage of dry weight)

<table>
<thead>
<tr>
<th>Insect Order</th>
<th>Protein</th>
<th>Amino acid</th>
<th>Essential Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td>Average</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>66.26</td>
<td>66.26</td>
<td>97.65</td>
</tr>
<tr>
<td>Odonata</td>
<td>65.45</td>
<td>64.73</td>
<td>58.83</td>
</tr>
<tr>
<td>Isoptera</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Orthoptera</td>
<td>65.39</td>
<td>22.80</td>
<td>44.10</td>
</tr>
<tr>
<td>Homoptera</td>
<td>57.14</td>
<td>44.67</td>
<td>51.13</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>73.52</td>
<td>12.49</td>
<td>55.14</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>66.20</td>
<td>23.20</td>
<td>50.41</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>68.30</td>
<td>14.05</td>
<td>44.91</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>76.69</td>
<td>12.65</td>
<td>47.81</td>
</tr>
</tbody>
</table>

www.ejbps.com
Table 2. Percentage of Fatty acids, saturated and unsaturated in edible insects

<table>
<thead>
<tr>
<th>Species</th>
<th>Saturated</th>
<th>Un saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Macrotermes annandalei (Silvestri)</td>
<td>18.54</td>
<td>9.98</td>
</tr>
<tr>
<td>Macrotermes subhyalinus</td>
<td>33</td>
<td>1.4</td>
</tr>
<tr>
<td>Oxya chinensis (Thunberg)</td>
<td>25</td>
<td>26.1</td>
</tr>
<tr>
<td>Locusta migratoria migratorioides (R. & F.)</td>
<td>25.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Melanoplus sanguinipes (Fabricius)</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Schistocerca gregaria (Forska) male adult</td>
<td>40.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Schistocerca gregaria (Forska) female adult</td>
<td>34.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Rhynchophorus phoenicus (Fabricius)</td>
<td>36</td>
<td>0.3</td>
</tr>
<tr>
<td>Tenebrio molitor L.</td>
<td>23.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Antheraea pernyi Guérin-Ménéville pupa</td>
<td>2.37</td>
<td>27.81</td>
</tr>
<tr>
<td>Dendrolimus houi Lajonquiere pupa</td>
<td>3.03</td>
<td>4.40</td>
</tr>
<tr>
<td>Dendrolimus houi Lajonquiere adult</td>
<td>36.64</td>
<td>7.84</td>
</tr>
<tr>
<td>Galleria mellonella</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>Musca domestica L. larva</td>
<td>12.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Polyvrachis dives Smith</td>
<td>21.14</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Table 3. Percentage of Lipid in edible insects (Percentage of dry weight)

<table>
<thead>
<tr>
<th>Insect order</th>
<th>Lipid</th>
<th>Max.</th>
<th>Min.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odonata</td>
<td>41.28</td>
<td>14.23</td>
<td>25.38</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>55.10</td>
<td>9.79</td>
<td>21.42</td>
<td></td>
</tr>
<tr>
<td>Homoptera</td>
<td>30.60</td>
<td>24.85</td>
<td>27.73</td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td>44.30</td>
<td>9.73</td>
<td>30.43</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>35.86</td>
<td>14.05</td>
<td>27.57</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>49.48</td>
<td>5.02</td>
<td>4.76</td>
<td></td>
</tr>
<tr>
<td>Orthoptera</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td>12.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Percentage of Carbohydrate in edible insects (Percentage of dry weight)

<table>
<thead>
<tr>
<th>Insect Order</th>
<th>Carbohydrate</th>
<th>Max.</th>
<th>Min.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odonata</td>
<td>4.78</td>
<td>2.36</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>7.15</td>
<td>1.95</td>
<td>3.65</td>
<td></td>
</tr>
<tr>
<td>Homoptera</td>
<td>2.80</td>
<td>1.54</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td>4.37</td>
<td>2.04</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td>2.82</td>
<td>2.79</td>
<td>2.81</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>16.27</td>
<td>3.65</td>
<td>8.20</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Some eat insects element content (Percentage of dry weight)

<table>
<thead>
<tr>
<th>Species</th>
<th>Phosphorus</th>
<th>Magnesium</th>
<th>Iron</th>
<th>Zinc</th>
<th>Copper</th>
<th>Magnesium</th>
<th>Calcium</th>
<th>Sodium</th>
<th>Potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compus cuneatus Needham</td>
<td>1470</td>
<td>74.8</td>
<td>728.9</td>
<td>12.9</td>
<td>64.3</td>
<td>880</td>
<td>4180</td>
<td>590</td>
<td>2620</td>
</tr>
<tr>
<td>Lestes paraemorsa Selys</td>
<td>2470</td>
<td>58.9</td>
<td>1198</td>
<td>147.7</td>
<td>64.8</td>
<td>970</td>
<td>2160</td>
<td>2020</td>
<td>2930</td>
</tr>
<tr>
<td>Crocorthemis servilia Dury</td>
<td>1420</td>
<td>27.2</td>
<td>461.6</td>
<td>103.3</td>
<td>50.6</td>
<td>950</td>
<td>1510</td>
<td>2130</td>
<td>3330</td>
</tr>
<tr>
<td>Darthula hardwicki (Gray)</td>
<td>-</td>
<td>13.6</td>
<td>100</td>
<td>544.3</td>
<td>56.9</td>
<td>4500</td>
<td>280</td>
<td>610</td>
<td>2120</td>
</tr>
<tr>
<td>Ericerus pela Chavaness, egg</td>
<td>6000</td>
<td>26.74</td>
<td>133.1</td>
<td>164.2</td>
<td>23.6</td>
<td>1200</td>
<td>353.7</td>
<td>9</td>
<td>6300</td>
</tr>
<tr>
<td>Cyclopela parva Distant</td>
<td>8200</td>
<td>19.9</td>
<td>119.7</td>
<td>155.8</td>
<td>2.4</td>
<td>30.15</td>
<td>480</td>
<td>1680</td>
<td>4720</td>
</tr>
<tr>
<td>Eusthenes saevus Stal.</td>
<td>1520</td>
<td>16.3</td>
<td>98.3</td>
<td>78.4</td>
<td>45.4</td>
<td>260</td>
<td>280</td>
<td>780</td>
<td>610</td>
</tr>
<tr>
<td>Cystrotrachelas buqueti</td>
<td>5190</td>
<td>21</td>
<td>64.7</td>
<td>306.1</td>
<td>38.4</td>
<td>1050</td>
<td>270</td>
<td>650</td>
<td>2620</td>
</tr>
<tr>
<td>C.longimanus Fabricius</td>
<td>2920</td>
<td>25.9</td>
<td>66.3</td>
<td>127.1</td>
<td>22.9</td>
<td>480</td>
<td>390</td>
<td>510</td>
<td>1740</td>
</tr>
<tr>
<td>Holotrichia obita (Faldermann)</td>
<td>-</td>
<td>46.50</td>
<td>313.7</td>
<td>0.133</td>
<td>8.86</td>
<td>55.78</td>
<td>97.22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anomala corpulenta</td>
<td>-</td>
<td>61.61</td>
<td>299.5</td>
<td>84.51</td>
<td>6.82</td>
<td>97.04</td>
<td>34.94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motschulsky</td>
<td>-</td>
<td>20.03</td>
<td>38.54</td>
<td>97.48</td>
<td>5.56</td>
<td>03.65</td>
<td>87.47</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CONCLUSIONS
Edible insects are full of protein and amino acids, especially the amino acids necessary for human body. Insects are the source of protein. These creatures can be rich in fat, fatty acids, nutrients, vitamins and carbohydrates, especially more unsaturated fatty acids are most in nutritional value are excellent. In addition, the antimicrobial proteins and peptides, enzymes and hormones soften the skin while growing, industrial production will be released.

CONFLICT OF INTEREST STATEMENT
We declare that we have no conflict of interest.

ACKNOWLEDGEMENTS
The authors are grateful to Dr J.Rafinejad, Department of Medical Entomology and Vector Control, for his valuable suggestions. A part of this study was financially support from Tehran University of Medical Sciences (89-03-27-11453).

REFERENCES
5. The authors are grateful to Dr J.Rafinejad, Department of Medical Entomology and Vector Control, for his valuable suggestions. A part of this study was financially support from Tehran University of Medical Sciences (89-03-27-11453).

Aromia bungii Faldermann
- 15.47 102.5 98.76 3.97 20.54 31.56 - -
Anoplophora nobilis
Ganglbauer
- 9.56 05.33 95.42 0.42 105.2 33.56 - -
Apriona germari (Hope)
- 20.47 96.56 02.34 5.46 54.36 50.68 - -
Pectinophora gossypella
(Saunders)
- . 36.78 87.01 3.40 63.21 13.40 - -
Corcyra cephalonica
Stainton
- 6.87 64.81 78.29 7.13 56.81 48.66 - -
Ostrinia furnacalis (Gunnée)
- 4.56 70.26 91.78 4.84 84.06 40.53 - -
Papilio machaon L
457 0.9 18 3.5 1.5 279 384 90.5 1250
Chilo fuscidentalis Hampson
1690 41.8 57.1 109 11.1 1060 880 740 2620
Antheraea pernyi
690 8.73 0.01 141.8 9.01 3800 790 620 13390
Musca domestica L
17900 406 520 570 59 12300 1200 2700 15600
Polyrhachis dives Smith
female adult
- 0.35 78.36 55.42 2.66 72.36 13.34 - -
Polyrhachis dives Smith
male adult
- 0.89 91.56 48.83 7.08 63.78 85.28 - -

