SPECTROPHOTOMETRIC DETERMINATION OF AN AZILSARTAN MEDOXOMIL DRUG IN BULK AND PHARMACEUTICAL FORMULATIONS

Ritika Makhijani*, Vighnesh Nalawade, Divyadarshni Balasubramaniam and V. D. Barhate

Department of Chemistry, VES College of Arts Science and Commerce, Chembur Mumbai 400071, India.

*Corresponding Author: Ritika Makhijani
Department of Chemistry, VES College of Arts Science and Commerce, Chembur Mumbai 400071, India.

Article Received on 24/03/2018 Article Revised on 14/04/2018 Article Accepted on 05/05/2018

ABSTRACT
A new simple, precise, sensitive, accurate and reproducible spectrophotometric method have been developed for determination of azilsartan medoxomil(Azutan) in pure and dosage forms. Method is based on oxidation of drug with 1, 10 phenanthonline producing orange colour chromogen which is measured at 510 nm. Beer’s Law is obeyed in the concentration range of 1.0 -7µg/ml. for the developed method. The molar absorptivity and sandell’s sensitivity are found to be 0.59 X 10^4 L. mol^-1.cm^-1 and 0.0733 µg/cm^2 respectively. Different experimental parameter affecting the colour development and stability of coloured products are carefully studied and optimized. The developed method could be successfully applied to pharmaceutical formulations. The result obtained are in good agreement with those obtained using standard method.

KEYWORDS: Azilsartan medoxomil, spectrophotometric method 1,10 phenonthroline.

INTRODUCTION
Azilsartan Medoxomil is a prodrug of azilsartan. It is marketed as "Edarbi" by Takeda. It is practically insoluble in water, freely soluble in methanol and dimethylsulfoxide, soluble in acetic acid, slightly soluble in acetone and acetonitrile, and sparingly soluble in tetrahydrofuran and 1-octanol.[1]

It is used for the treatment of mild to moderate essential hypertension.[2] Azilsartan medoxomil is an angiotensin II receptor antagonist. Angiotensin II is a hormone that contracts blood vessels and reduces water excretion through the kidneys. Upon hydrolysis, azilsartan selectively and competitively binds to the AT1 subtype angiotensin II receptor and blocks the binding of angiotensin II to the receptor[3], thus promoting vasodilatation and counteracting the effects of aldosterone. Thus Azilsartan medoxomil lowers blood pressure Azilsartan medoxomil has an ability to remain tightly bound to AT1 receptor for very long period of time. Azilsartan medoxomil was found to be superior to olmesartan and valsartan.

Pharmacokinetics of Azilsartan medoxomil suggests that it is quickly absorbed from the gut. Maximal blood plasma concentrations are reached after one to three hours. The liver enzyme CYP2C9 converts it in the two main metabolites, they are the O-deethylation and decarboxylation products of azilsartan, which are pharmacologically inactive. Elimination half life is about 11 hours. 55% are excreted via the faeces, and 42% via the urine, of which 15% are present as azilsartan and the rest in form of the metabolites.[4]

The drug formulation contains the potassium salt of azilsartan medoxomil (codenamed TAK-491), an ester of azilsartan's carboxyl group with the alcohol Its molecular formula is C30H24N4O8 Its IUPAC name is (5-methyl-2-oxo-1,3-dioxol-4-yl)methanol. This ester is more lipophilic than azilsartan itself. Azilsartan medoxomil(Azilsartan Medoxomil) is a white to nearly white powder with molecular mass: 456.48g/mol.

Structure of azilsartan medoxomil

The literature survey shows that many spectrophotometric and chromatographic methods[5-9] for assaying and estimation of azilsartan medoxomil in
pharmaceutical dosages which are having some advantages as well as limitations.

The aim of the present work is to develop simple method for the determination of Azilsartan medoxomil in different dosage form. The proposed methods are comparable with reported method with respect to sensitivity moreover the methods neither require extraction nor prior separation of the drug.

MATERIALS AND METHODS

Instrumentation
An Systronics UV-VIS Spectrophotometer-118 Model with 1 cm length quartz coated optics; Wavelength range 190-1000nm; High stability, linearity, precision instrument is used for all the spectral measurements. All chemicals and reagents used in the analysis are of analytical grade and doubly distilled water is used for the preparation of all the solutions.

MATERIALS AND METHODS

Preparation of Standard solution of drug
An accurately weighed 40 mg of Azilsartan Medoxomil is dissolved in 50 ml of methanol. The final volume is adjusted with 50% methanol to 100 ml in standard flask.

Preparation of Reagents
- 0.241%(w/v) Fe (III) solution is prepared by dissolving 241 mg of anhydrous ferric ammonium sulphate in 100 ml of double distilled water,
- 0.991% (w/v) o-phenanthroline is prepared by dissolving 991 mg of the reagent in 100 ml of alcohol
- 0.15% (v/v) O-phosphoric acid solution is prepared by diluting 0.15 ml of laboratory reagent (AR Grade) of o-phosphoric acid to 100 ml with distilled water.

Experimental Procedure
Different portions (0.5-7.0 ml, 20 µg/ml) of standard Azilsartan medoxomil solution is delivered into a series of 25 ml standard flask and then 1.0 ml of 5.0 x 10^{-3} M of Fe (III) solution, 1.0 ml of 5.0 x 10^{-2} M o-phenanthroline are added successively. The total volume in each tube is brought to 20 ml with distilled water. The flasks are kept on a boiling water bath for 60 min. The tubes are removed and cooled to room temperature. 1.0 ml of 2.0 x 10^{-2} M of O-phosphoric acid is added and volume in each flask is made up to the mark with distilled water. The absorbance of the colored complex solution is measured after 5 min against a reagent blank prepared similarly except drug and maximum absorbance is found to be at 510 nm (Fig.1). The amount of the Azilsartan drug is computed from the appropriate calibration graph (Fig.2).

Analysis of pharmaceutical sample
Tablets powdered equivalent to 40 mg of the drug is weighed accurately and transferred into 100 ml beaker and shaken with 50 ml methanol. The resulting solution is filtered into 100 ml standard flask and volume is adjusted with 50% methanol. Suitable aliquots of this solution used for the determination of Azilsartan Medoxomil contents by procedure describe earlier.

Fig.-1: Absorption spectra Azilsartan Medoxomil with Fe (III)/O-PHEN(50ppm).

Fig.-2: Linear plot of Azilsartan Medoxomil with Fe (III)/O-PHEN.

The calibration curve is found to be linear over a concentration range of 0.5-7.0 µg/ml of Azilsartan.

Fig.3: Effect of heating time on absorbance of developed system.
50 minutes are sufficient for full colour development hence 60 minutes time is selected for further studies.

![Fig.4: Effect of concentration of H₃PO₄ on colour development.](image)

Absorbance remains constant after 0.015M concentration of H₃PO₄. Hence 0.02M H₃PO₄ is used for colour development and further studies.

![Fig.5: Effect of concentration of 1,10 phenanthroline on absorbance of developed system.](image)

0.05 M Concentration of 1,10 Phenanthroline is sufficient for full colour development. Hence it is used for further study

RESULTS AND DISCUSSION

Scheme of coloured product

Ferric salts play a prominent role in spectrophotometric determination of many pharmaceutical drug substances acting as an oxidant[12,13,14]. The Fe⁺³/O-phenanthroline (Fe⁺³/Phen) system is valuable reagent for any analytes with reducing properties, because the final product is intensely colored and extractable chelate [Fe(phen)₃]²⁺.

Drug Azilsartan undergo oxidation by FPL reagent in a weakly acidic medium, forming an orange red colored complex with absorption maximum at 510 nm. The optimum reaction parameters were established via a number of preliminary experiments.

Ferric salt oxidises the drug and is itself converted into a ferrous salt and can be easily detected by the usual reagent O-Phenanthroline. The reaction product is tris complex of Fe (III), well known as ferroin. The colored product of the reaction is given below.

In order to test whether the coloured product formed in this method adhere to Beer’s Law, the absorbance at maximum wavelength of series of eight concentrations are plotted against concentration of drug in µg/ml. Beer’s Law is obeyed within the limits 0.5 to 7 µg/ml of cetirizine, Molar absorptivity and sandell sensitivity are found to be 0.59 X 10⁻⁴ Lmol⁻¹cm⁻¹ and 0.0733 µg/cm² respectively. Regression analysis of Beer’s Law plots at λmax reveals a good correlation. The graph show negligible intercept and described by regression equation y = 0.0303X + 0.0013. Where Y is the absorbance of 1 cm layer, b is the slope, a is the intercept and C is the
concentration of the measured solution in µg/mL. The high molar absorptivity of resulting coloured complex indicates the high sensitivity of method.

Limit of detection (LOD)

LOD was calculated based on standard deviation of response and the slope of calibration curve. The limit of detection was expressed as. \(\text{LOD} = 3 \times \sigma/S \)

Where \(\sigma \) is the standard deviation of intercept, \(S \) is the slope of calibration curve.

Limit of Quantitation (LOQ)

LOQ was calculated based on standard deviation of intercept and slope of calibration curve. In this method the limit of quantitation is expressed as. \(\text{LOQ} = 10 \times \sigma/S \)

Where \(\sigma \) is the standard deviation of intercept, \(S \) is the slope of calibration curve.

The results were summarized in table above indicating good sensitivity of proposed method. According to USP validation guidelines (TUSP, 2002).

Table 1: Optical characteristics, Regression parameters, Precision and Accuracy of the proposed method.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Wavelength (\lambda_{\max})</td>
<td>510 nm</td>
</tr>
<tr>
<td>Beer's Law Limits µg/mL</td>
<td>0.5-7.0</td>
</tr>
<tr>
<td>Sandell's Sensitivity (µg/cm² /0.0001 Absorbance)</td>
<td>0.0733</td>
</tr>
<tr>
<td>Molar Absorptivity L/mole/cm</td>
<td>0.59 X 10^4</td>
</tr>
<tr>
<td>Slope(b)*</td>
<td>0.0303</td>
</tr>
<tr>
<td>Standard Deviation (S) on slope</td>
<td>0.001004</td>
</tr>
<tr>
<td>Intercept(a)*</td>
<td>0.0013</td>
</tr>
<tr>
<td>Standard Deviation (S) on Intercept(a)*</td>
<td>0.004276</td>
</tr>
<tr>
<td>LOD</td>
<td>0.4657</td>
</tr>
<tr>
<td>LOQ</td>
<td>1.41122</td>
</tr>
</tbody>
</table>

*Regression equation \(Y = a + b \times C \), Where \(Y \) stands for absorbance and \(C \) is concentration in µg/mL. %Relative standard deviation is calculated for ten determination

The proposed method has been used for the analysis of Azilsartan. The result obtained are comparable with standard method[6] (Table-2).

Table 2: Analysis of Pharmaceutical Formulations of Azilsartan.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Manufacturing company</th>
<th>Labelled amount (mg)</th>
<th>*Amount found by Proposed Method A (mg)</th>
<th>*Amount found by Proposed Method B (mg)</th>
<th>*Amount found by HPLC Method (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azilsartan Medoxomil</td>
<td>Synokem</td>
<td>40</td>
<td>39.76</td>
<td>39.79</td>
<td>39.87</td>
</tr>
<tr>
<td>ABEL</td>
<td>Lupin</td>
<td>40</td>
<td>39.86</td>
<td>39.75</td>
<td>39.88</td>
</tr>
<tr>
<td>AZILCAD</td>
<td>Cadila</td>
<td>40</td>
<td>39.65</td>
<td>39.86</td>
<td>39.96</td>
</tr>
</tbody>
</table>

* Average of three determinations

CONCLUSIONS

The developed method is simple, sensitive, accurate and reproducible. This method can be successfully applied for the analysis of pharmaceutical formulations in any laboratory.

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the DBT star scheme and the use of central instrumentation facilities at V.E.S College of Arts Science & Commerce funded by FIST-DST.

(Ministry of Science & Technology, Department of Science & Technology) The Authors are also thankful to Principal VES College of Arts Science and commerce for providing all three necessary facilities to complete the above research project.

REFERENCES

3. Kurtz TW, Kajiya T. Differential pharmacology and benefit/risk of azilsartan compared to other sartans. Vasc Health Risk Manag, 2012; 8: 133–143. [PMC free article] [PubMed]

12. Manjusha D. Karad and Dr. V.D. Barhate* Development of spectrophotometric determination of an antidiabetic drug saroglitazar bulk and pharmaceutical formulations using 1,10 phenanthroline International Journal of Pharmacy, Biologyy and Chemistry, 2015; 4(3): 548-553
