PREVALENCE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF NEISSERIA GONORROHEAE AMONG PATIENTS ATTENDING GYNECOLOGY AND SEXUAL TRANSMITTED INFECTION CLINICS AT BAHIR DAR TOWN, NORTH WEST ETHIOPIA

Tameru Menberu Melaku1,2 and Robel Mekonnen Yimer1,2*

1Bahir Dar University, College of Medicine and Health Sciences, Department of Medical Microbiology, Parasitology and Immunology, Bahir Dar, Ethiopia.

2Dire Dawa University, College of Medicine and Health Sciences, School of Medicine, Dire Dawa, Ethiopia.

*Corresponding Author: Robel Mekonnen Yimer

Dire Dawa University, College of Medicine and Health Sciences, School of Medicine, Dire Dawa, Ethiopia.

ABSTRACT

Background: Neisseria gonorrhoeae infection is the second most common prevalent sexually transmitted bacterial infection. Currently, the increasing prevalence of antimicrobial-resistant \textit{N. gonorrhoeae} isolates is a concern. The aim of this study was to determining the proportion and antimicrobial susceptibility pattern of \textit{N. gonorrhoeae} isolates among patients attending Gynecology and Sexually transmitted infection clinic in the selected health institution at Bahir Dar Town, Northwest Ethiopia. **Methods:** Across sectional study was done at the selected health institution in Bahirdar town from February 01 to July 30, 2017. Data on socio-demographic characteristics and possible associated factors were collected by face to face interview using structured pre-tested questionnaire. Urethral and endo-cervical swab sample were collected by trained nurses. The collected samples were transported to microbiology laboratory and processed within 15min following standard microbiological techniques. Antimicrobial susceptibility profile of the isolates was performed using Kirby-Bauer disk diffusion method. Descriptive statistics were used to present relevant variables. Binary logistic regression was used and significant variables were further adjusted using multivariate analysis. A p-value <0.05 was considered as level of significance. **Results:** Of the total 169 STI symptomatic patients screened, 8(4.7\%) were positive for \textit{N. gonorrhoeae} infection. The highest proportion of \textit{N. gonorrhoeae} infection occurred in the age group of 15-29 years at 7(6.1\%). The number of \textit{N. gonorrhoeae} infection isolate was seven in females and one in males. However, the difference was not statistically significant (P = 0.76). Alcohol intake (p=0.035) and khat chewing (p=0.011) were significantly associated with \textit{N. gonorrhoeae} infection. All \textit{N. gonorrhoeae} isolates were resistant to Penicillin and Tetracycline. Whereas three isolates showed resistance to Doxycyclin, Cefoxitin, Cefixime, Cefpodoxime, Ofloxacin, Spectinomycin but all isolates were sensitive to Ceftriaxone. This study concludes that drinking alcohol and chewing chat were the identified associated variables. Thus, awareness on substance use should be created in the community. Emphasis should be given among health professionals in minimizing misuse of antibiotics.

KEYWORD: \textit{N. Gonorrhoeae}, Drug Susceptibility Patterns, STI, Bahirdar, Ethiopia.

BACKGROUND

Sexually transmitted infections (STI) are a major public health problems in most part of the world [MMWR, 2015]. Gonorrhea is a type of STI caused by \textit{Neisseria gonorrhoeae} [WHO, 2016] and it is the second most common causes of STI [Viscidi and Demma, 2003; Gonorrhea CDC Fact Sheet, 2014; WHO, 2015, 2016].

\textit{N. gonorrhoeae} is a gram negative cocci, micro-aerophilic and fastidious bacterium. It preferentially colonizes and multiplies easily in the warm, moist mucosal surface of the reproductive tract [Merz & So 2000]. These bacteria have natural transformation and antigenic variation capacity. Its virulence factors include: pili, IgA proteases, endo-toxin and porin proteins (ProB), antibiotic resistance gene (gyrA and parC) [Edwards and Apicella, 2004; Stathi et al., 2006; Junior et al., 2007; Low et al., 2014; Lin1 et al., 2015]. The primary site of infection is the epithelium of reproductive tracts. It also infects rectum, joints, throat and eyes [Stathi et al., 2006; Low et al., 2014; Lin1 et al., 2015]. Infection of the vagina or penis cause burning/stiching sensation, urgency and pain during urination. If infection left untreated, it may lead to serious complications like pelvic inflammatory disease, epididymitis, ectopic pregnancy,
infertility, tenosynovitis and blindness [Merz and So, 2000; Bala, 2011].

About 87.7 to 106.1 million people suffer from gonorrhea worldwide and 53% of them were male [Gewirtzman, Bobrick, Conner and Stephen K Tyring, 2011; MMWR, 2015; Newman et al., 2015; WHO, 2016]. According to World Health Organization (WHO) report, the burden of gonorrhea is high especially in Africa and other developing countries where the prevalence is >8.2% [WHO, 2012]. In Ethiopia, the prevalence of gonorrhea disease varies from place to place. Most of these data were from simple cross sectional study. In Ethiopia gonorrhea and other STI are managed by syndromic approach [Hailemariam et al., 2013; Ali et al. 2016].

Even though gonorrhea infection is primarily affects people whose age is between 15 and 49 year; low socio economic status, unmarried, past history of infection and low education are the most risk factors documented so far [Edwards and Apicella, 2004; Who, 2012; Newman et al., 2015].

The emergence of resistance to antimicrobial agents is a global public health problem, a according to different countries stated that emerging resistance of N. gonorrhoeae to antimicrobial agents, resulting from both wide dissemination of resistant clones and strains with novel resistance mechanisms [Juniur et al., 2007]. N. gonorrhoeae develops resistance to B-lactam antibiotic by producing , Penicillinase, B-lactamase, acquiring resistance plasmid and chromosomally mediated [Gong et al., 2016]. CDC advocated the use of expanded generation cephalosporin or fluoroquinolones as first line therapy for uncomplicated gonorrhea [Byarugaba, 2009; Bala, 2011]. Currently, strains exhibiting decreased susceptibility to ciprofloxacin or ofloxacin have been reported in Asian and European countries [Tapsall, 2001; Junior et al., 2007; Gong et al., 2016; Magnus et al., 2016].

Few available reports on prevalence of N. gonorrhoeae in Ethiopia showed significant variation in distribution among the regions. Due to unavailability of culture-facility in health institutions in the country, the treatment of gonorrhea is almost empirical and antibiotics are generally given without considering sensitivity report. Recently in any health facilities the STI case are routinely managed by syndromic approach [Health Sector Development Programme, 2014; STI, 2015] where patients suspected of N. gonorrhoeae infection are treated empirically by giving antibiotics recommended in the package. The objective of this study was to determine the proportion of N. gonorrhoeae and its antimicrobial susceptibility profile, and associated factors for N. gonorrhoeae infection among people with STI complaints presented to health facilities in Bahir Dar.

MATERIALS AND METHODS

Study Area: This study was conducted in Bahirdar town. In 2015, Bahirdar has a population of 256,156, of whom 97,160 males and 158,996 females [CSA, 2015]. Patient flow in selected health institution for more than 5 million people of which 560 were STI cases. STI cases can be seen at two (gynecology and STI) clinics in the Bahirdar Health institution.

Study Design and Period

A facility based cross sectional study was conducted from February 01 to July 30 2017 in selected health institution found in Bahirdar town.

Source Population

All men and women STI symptomatic patients attended STI clinic and gynecology outpatient department at FHRH, FGA, and MSIE at Bahirdar town.

Study Population

All men and women STI suspected patient who attended in STI clinic and gynecology outpatient department at FHRH, FGA, and MSIE at Bahirdar town from February-2017-to July-30-2017.

Inclusion Criteria

All men and women who had sign and symptom of STI and any age group and who had no history of abnormal uterine bleeding (AUB) and antibiotic treatment in the preceding one week were included in the study.

Exclusion Criteria

• All men and women who had history of antibiotic treatment in the preceding one weeks at the time of data collection
• Severely ill patients
• Abnormal uterine bleeding (AUB)
• Pregnancy
• women who were on menstruation at the time of examination

Sample Size Determination

The sample size was calculated using single proportion formula by taking 11.3% of N. gonorrhoeae infection taken from previous study [Ali et al. 2016], 95% confidence interval, 5% margin of error using kish’s formula [Kish.L,1995]

\[n = \left(\frac{z_{\alpha/2}}{d}\right)^2 \frac{p(1-p)}{d^2}\]

Where

- \(n\) = Sample size
- \(\alpha\) = level of significance
- \(z\) = at 95% confidence interval Z value (\(\alpha = 0.05\) =>\(Z_{0.02}\) = 1.96
- \(p\) = Proportion of occurrence of the gonorrhea to be studied 11.3%.
- \(d\) = Margin of error at (5%) (0.05)
Accordingly the sample size calculated as 154, and adding 10% non-response rate (15 individual) i.e. 154+15 = 169

Sampling Technique
First lottery method was used to select three representative health institutions found in Bahirdar city. Then the calculated sample size was proportionally allocated to Feleg-Hiwot Referral Hospital (FHRH) (N=100), Family Guidance Association (FGA) (N=40), and Bahirdar health center (BDHC) (N=29) according to their patient flow. Patients eligible for this study were included using systematic sampling technique until the required sample size was achieved.

Data collection Techniques
Demographic data, clinical profiles and factors related to STI were collected through face to face interview using pre-tested structured questionnaires. Nurses attending STI and gynecology OPD in selected clinics were assigned as data collectors. Written consent was obtained from study participant patients prior to data collection then information on socio-demographic and other variables of interest was collected by trained data collectors using pre-designed questioners.

Swab Sample collection and processing
Endo-Cervical and urethral swab were collected using Dacron or rayon swabs of aseptically following standard procedures by trained nurses obtained discharge from Cervix and urethra sites before the discharge collected cleaned by antiseptic solution. The collected specimen was transported to the Amhara Public Health institution (APH) within 15-minute using Ames charcoal transport media [Khanam et al., 2014].

The Dacron or rayon swabs were inoculated in to Modified Thayer-Martin Media (MTMM) (OXOID transport swabs Italia SpA and Brescia Italy). The swab was strike in four quadrants to allow growth of pure colonies. The inoculated plates were incubated at 35°C in a moist atmosphere enriched with 5% CO₂ for 24-48 hours. Negative plates were incubated for additional 24 hours. Then the growth was inspected macroscopically and detected for N. gonorrhoeae [CLSI, 2016; Janda, 2004].

Isolation and Identification of N. gonorrhoeae
Identification of the culture isolates was done according to the standard bacteriological methods [CLSI, 2016]. Colony morphology, gram reaction and microscopic features were used as primarily identification criteria. Further identification was done by biochemical tests such as Oxidase and catalase tests. Bacteria that showed growth checked by gram staining. Gram negative Intracellular diplococci further checked by Oxidase and catalase test. Those positive for Oxidase and catalase were considered as species N. gonorrhoeae.

Antimicrobial susceptibility testing (AST)
Antimicrobial susceptibility testing was done on GC-chocolate agar with 1% Iso-Vitale-X supplement for all isolates according to the criteria of Clinical and Laboratory Standard Institute (CLSI) by the Kirby-Bauer disk diffusion method [CLSI, 2016]. Bacterial suspensions with turbidity standard equivalent to 0.5 McFarland were swabbed evenly on plate. A set of ten antibiotic discs (Oxoid Ltd., Basingstoke, Hampshire, England) with the following concentrations: The drug choose for N.gonorrohoeae was use, Penicillin (P,10µg), Tetracycline (TE, 30µg), Ciprofloxacin (CIP-5µg), Ceftriaxone (CRO-5µg), Doxycyclin (DOX-100), Cefoxitin (FOX-30µg), Cefixime (CFM-5µg); Cefpodoxime (CPD-30µg) OFX(ofloxacin-5µg), Spectinomycin (SPT-100µg). These were placed on the surface of the plate. Then, the plates were incubated at 37 °C in candle jar, generating 5 % CO₂, for 20–24 h. Zone of inhibition was measured and interpreted as sensitive, intermediate and resistant according to the principles established by CLSI [CLSI, 2016]. In order to monitor quality (potency) of disks, a standard strain of N. gonorrhoeae American Type Culture Collection (ATCC) 49226 was tested weekly. These antibiotic disks were selected based on the national drug list and recommendation of N. gonorrhoeae treatment [CLSI, 2016].

DATA ANALYSIS
Data were sorted, coded and entered in to computer by using Epi Data version 3.02 after checked for completeness and accuracy. Then data were exported to Statistical Package for Social Sciences (SPSS) database program 20 version for further analysis. Univariate analysis and appropriate graphic presentations was used for describing data. Bivariate analysis of demographic and other possible variables associated with N. gonorrhoeae infection was done. Adjusted odds ratio along with 95% Confidence Interval (CI) was estimated to identify factors associated with N. gonorrhoeae culture positivity using multivariate logistic regression analysis. A p-value < 0.05 was considered as statistically significant.

RESULTS
Socio-Demographic characteristics of the study participants
A total of 169 STI symptomatic patients were screened at FHRH, FGA and BDHC. Of the total participants, 153(90.5%) were females. The median age of participants was 26 years. Majority (78.7%) of participants were urban dwellers. Similarly, 133 (78.7%) were from urban area, 93(55%) were unmarried, and 75(44.5%) were unemployed as shown in Table 1.

Prevalence of N. gonorrhoeae
Out of the total 169 participants whose urethral and or endo-cervical swabs investigated, N. gonorrhoeae was isolated from 8(4.7%) patients. The highest proportion 7(6.1%) of N. gonorrhoeae infection isolated among people whose age range between 15-29 year-olds.
compared to above 30-year-olds participants. However, the difference was not statistical significant (P=0.234). The number of *N. gonorrhoeae* isolates was higher in females 7(4.3%) than males 1(6.2%). Moreover, it was higher among urban 6(75%) than rural dwellers, unmarried 6(75%) than married, unemployed 6(75%) than employed, and among those attained less than primary school 6(75%) than their counter parts. However, none of these variables showed significant differences (Table 2).

When assessed the prevalence of *N. gonorrhoeae* infection with regard to risk sexual behavior, it was found that among people who had multiple sexual partners, 8(100%), while only 1(9.1%) and 1(8.3%) identified among those who had history of abortion and rape, respectively. Similarly, about 3(37.5%) and 5(62.5%) of was isolated among those who have been chewing khat for the last 6 months and who consume alcohol, respectively. However, the proportion of *N. gonorrhoeae* isolates was significantly higher among alcohol drunker p=0.035 and khat chewers p=0.011 than their counterparts (Table 2).

Antimicrobial Susceptibility Testing:
All the eight isolates were sensitive to Ceftriaxone. Only three isolates showed resistance Doxycyclin, Cefoxitin, cefpodoxime, ofloxacin, cefixime and spectinomycin. On other hand, all eight isolates showed resistance against Penicillin and Tetracycline.

Table 1: Socio-Demographic characteristics and sexual risk behavior of patient attending Gynecology and STI clinic at Bahir Dar town Ethiopia (Feb-July 2017)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>Male</td>
<td>16</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>153</td>
<td>90.5</td>
</tr>
<tr>
<td>Age ranges (year)</td>
<td>15-29</td>
<td>114</td>
<td>67.5</td>
</tr>
<tr>
<td></td>
<td>≥30</td>
<td>55</td>
<td>32.5</td>
</tr>
<tr>
<td>Residence</td>
<td>Urban</td>
<td>133</td>
<td>78.7</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>36</td>
<td>21.3</td>
</tr>
<tr>
<td>Monthly Income in ETB</td>
<td>≤1000 ETB</td>
<td>42</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>>1000 ETB</td>
<td>127</td>
<td>75.1</td>
</tr>
<tr>
<td>Educational status</td>
<td>≤Primary School</td>
<td>87</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>>primary school</td>
<td>82</td>
<td>48.5</td>
</tr>
<tr>
<td>Marital status</td>
<td>Married</td>
<td>76</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Unmarried</td>
<td>93</td>
<td>55.0</td>
</tr>
<tr>
<td>Occupation</td>
<td>Unemployed</td>
<td>75</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>Employed</td>
<td>94</td>
<td>55.6</td>
</tr>
<tr>
<td>Drinking Alcohol</td>
<td>Yes</td>
<td>46</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>123</td>
<td>72.8</td>
</tr>
<tr>
<td>Chewing chat</td>
<td>Yes</td>
<td>15</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>154</td>
<td>91.1</td>
</tr>
<tr>
<td>Smoking cigarette</td>
<td>Yes</td>
<td>8</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>161</td>
<td>95.3</td>
</tr>
<tr>
<td>Number of sexual partner</td>
<td>single</td>
<td>76</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>multi-sexual</td>
<td>53</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td>No sexual partner</td>
<td>40</td>
<td>23.7</td>
</tr>
<tr>
<td>Use of condom</td>
<td>Yes</td>
<td>49</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>120</td>
<td>71.0</td>
</tr>
<tr>
<td>History of abortion</td>
<td>Yes</td>
<td>11</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>142</td>
<td>84.0</td>
</tr>
<tr>
<td>History of Rape</td>
<td>Yes</td>
<td>12</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>141</td>
<td>83.4</td>
</tr>
</tbody>
</table>
Table 2: Association of *N. gonorrhoeae* infection with socio-demographic and sexual risk behaviors of patient attending Gynecology and STI clinic at Bahir Dar town Ethiopia (Feb-July 2017)

<table>
<thead>
<tr>
<th>Variables</th>
<th>N. gonorrhoeae</th>
<th></th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive No (%)</td>
<td>Negative No (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male(1)</td>
<td>1 (6.2)</td>
<td>15 (93.8)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Female(2)</td>
<td>7 (4.3)</td>
<td>146 (95.4)</td>
<td>153</td>
</tr>
<tr>
<td>Age</td>
<td>15-29</td>
<td>7 (6.1)</td>
<td>107 (94)</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>≥30</td>
<td>1 (2)</td>
<td>54 (98)</td>
<td>55</td>
</tr>
<tr>
<td>Residence</td>
<td>Urban</td>
<td>6 (4.5)</td>
<td>127 (95.5)</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Ruler</td>
<td>2 (5.6)</td>
<td>34 (94.4%)</td>
<td>36</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Married</td>
<td>2 (2.6)</td>
<td>76 (97.4)</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Unmarried</td>
<td>6 (6.6)</td>
<td>85 (93.4)</td>
<td>91</td>
</tr>
<tr>
<td>Educational Status</td>
<td>≤Primary School</td>
<td>6 (6.9)</td>
<td>81 (93.1)</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>>primary school</td>
<td>2 (2.4)</td>
<td>80 (97.6)</td>
<td>82</td>
</tr>
<tr>
<td>Occupation</td>
<td>Un employed</td>
<td>6 (8)</td>
<td>69 (92)</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Employed</td>
<td>2 (2.1)</td>
<td>92 (97.9)</td>
<td>94</td>
</tr>
<tr>
<td>AMI (ETB)</td>
<td>≤1000</td>
<td>0 (0)</td>
<td>42 (100)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>>1000</td>
<td>8 (6.3)</td>
<td>119 (93.7)</td>
<td>127</td>
</tr>
<tr>
<td>Alcohol drinking</td>
<td>Yes</td>
<td>5 (10.9)</td>
<td>41 (89.1)</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3 (2.4)</td>
<td>120 (97.6)</td>
<td>123</td>
</tr>
<tr>
<td>Chewing khat the last 6-month</td>
<td>Yes</td>
<td>3 (20)</td>
<td>149 (86.8)</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>5 (3.2)</td>
<td>121 (96.8)</td>
<td>146</td>
</tr>
<tr>
<td>use Condom</td>
<td>Yes</td>
<td>2 (4.1)</td>
<td>47 (95.9)</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>6 (3)</td>
<td>114 (95)</td>
<td>120</td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td>Yes</td>
<td>1 (12.5)</td>
<td>7 (87.5)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>7 (4.3)</td>
<td>154 (95.7)</td>
<td>161</td>
</tr>
<tr>
<td>Number of sexual partner</td>
<td>Single</td>
<td>0 (0)</td>
<td>76 (100)</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Multiple-sex partner</td>
<td>8 (15.1)</td>
<td>45 (84.9)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>No-partner</td>
<td>0 (0)</td>
<td>40 (100)</td>
<td>40</td>
</tr>
<tr>
<td>Abortion History</td>
<td>Yes</td>
<td>1 (9.1)</td>
<td>10 (90.9)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>6 (4.2)</td>
<td>136 (95.8)</td>
<td>142</td>
</tr>
<tr>
<td>Rape History</td>
<td>Yes</td>
<td>1 (8.3)</td>
<td>11 (91.7)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>6 (4.2)</td>
<td>135 (95.8)</td>
<td>141</td>
</tr>
</tbody>
</table>

Key: AMI= average monthly income, I= Reference

DISCUSSION

N. gonorrhoeae is considered as one of the global public health problem. It remains a major cause of morbidity in sexually active age groups, and people who were dependent on alcohol [GSTIS 2015].

In this study, the prevalence rate of *N. gonorrhoeae* infection among symptomatic patients visiting gynecology and sexual transmitted infection clinic in Bahir Dar town was 4.7%. This figure might be considered as relatively low prevalence as this study included all patients with symptomatic to general STI not *N. gonorrhoeae* related symptoms. However, comparing with similar studies, which ranges the present finding is consistent with studies done in Hong Kong 4.4% [Mayaud et al., 1995], Burkina Faso 4.5% [Naidoo S,Wand H, Abba NS, 2014], Côte d’Ivoire 5.1% [Men et al., 2010], Hawassa, Ethiopia 5.1%, [Haillemariam et al.2013]. However, it was higher than studies from 0.3% in Melbourn, 0.5% in British, 0.6% in African Napdo, 1.6% in Yaounde, 1.9% in Mexico, 2% in Central African Republic, 2.2% in Jordan, 2.3% in Nepal, 2.6% in African city, 3.2% in Nairobi, Kenya and 3.8% at Global level [Luo et al. 2016; Bowle et al. 1981; GSTIS 2015, WHO 2016; Gewirtzman et al. 2011, Christian et al. 2005; Daly et al. 1994; Newman et al. 2015].
On the other hand, this finding was lower than studies from Ghana 6%, South Africa 8%, Bahirdar 8.2%, Gambella 11.3%, Jimma 17.7%, other countries like Bangladesh 42%, Uganda 59%, Taiwan 65% and Malawi 80% [Shimelise 2012; Bowle et al.1981; Buve et al., 2001; Yu et al. 2005; Tibebu et al. 2013; Khanam et al. 2014, Tumwesigye et al. 2015; Newman et al. 2015; Ali et al., 2016, Duplessis et al, 2017]. The observed discrepancy might be due to difference in the target population, sample size and cultural practices.

In this study, drinking alcohol and chewing chat showed statistical significant association with N. gonorrhoeae infection. Association between drinking alcohol and N. gonorrhoeae infection have been reported from Melborn, Nepal, Hong Kong, Gambella, and Jimma, Ethiopia, Uganda and Malawi. It was also suggested that substance use particularly alcohol consumption and khat chewing are cofactors as loss of inhibition and involvement in risky sexual behaviors such as multiple sexual partners and unprotected intercourse [WHO, 2011; Kahsay et al. 2015].

Unlike our study, some other study reported association between N. gonorrhoeae infection and age [Luo et al., 2016], residency [Haillemariam et al., 2013], commercial sex work [Christian et al., 2005; Shimelise, 2012; Yu et al., 2005; Zachariah et al., 2005].

In this study all N. gonorrhoeae isolates were sensitive to Ceftriaxone. However, three isolates showed resistance towards Doxycyclin, cefoxitin, cefpodoxime, ofloxacin, cefixime and spectinomycin. This was in line with reports from Hawassa and Gambella, Ethiopia, Nigeria, Bangladesh, Brazil ,Taiwan, MMWR [Haillemariam et al.2013; WHO 2015; Luo et al.2016; Yu et al.2005; Khanam et al.2014; MMWR, 2014; Ali et al. 2016]. However, due to frequent and improper uses of these antibiotics without laboratory test might pose this pathogen to develop resistance in near future [Allen et al.2011; STD, 2012; WHO, 2014]. A recent WHO report showed widespread resistance to older and cheaper antibiotics. Moreover, there are finding cases of the infection that are untreated by all known antibiotics. In this study N. gonorrhoeae isolates showed 62.5% of resistance against ciprofloxacin which is much higher than reports from Hawassa and Gambella, Ethiopia Nepal, Brazil and Uganda [Haillemariam et al. 2013; WHO, 2015; Luo et al.2016]. Such relative high rate of resistance might be associated with self-prescription, indiscriminate and intensive use of this antibiotic in health facilities found in Bahirdar. Moreover, ciprofloxacin is included in the syndromic management package, it is often used in combination with doxycycline or azithromycin for infections concomitant with Chlamydia trachomatis. It is also widely used both for other STDs and various bacterial infections. The alarming percentage of resistance against ciprofloxacin observed in this study challenges the current use of this drug in the syndromic management package of N. gonorrhoeae infections. Hence, switching from ciprofloxacin to ceftriaxone was optimal [Roy et al., 2005].

When comparing this finding with previous studies, comparable resistance profile is being reported across the countries. This report confirmed that early generation of Beta lactam antibiotics and fluoroquinolones became useless antibiotics for treatment of Gonococcal infection [Tibebu et al., 2013; Khanam et al., 2014; MMWR, 2014; Newman et al., 2015; Ali et al., 2016]. Notably, high levels of ciprofloxacin >90% resistance have been reported in a majority of countries globally, especially in the WHO southeast Asia region, the western pacific region and Africa region [Newman et al., 2015; Manuscript, 2011]. The variation in rate of penicillin resistance N. gonorrhoeae isolates in the same country might be an indication of the overtime period rising in resistance trend of the bacteria to this drug.

The cephalosporin drugs such as ceftriaxone found to be effective antibiotics for the treatment of N. gonorrhoeae which are responsible to cause Endo-cervical or urethral infections. This might be because these agents are expensive and not commonly used on the study area. This is in agreement with study done in USA, Australian and Romania [Tapsall, 2001; Toskin, 2014; Newman et al., 2015].

CONCLUSIONS

The proportion of N. gonorrhoeae infection was comparably higher in the study area. Higher proportion was identified among urban dwellers, female, unmarried individuals, unemployed, those having multiple sexual partners, and inconsistent condom users.

All isolates were resistant against penicillin and tetracycline. On the other hand, all isolates were found to be sensitive to ceftriaxone.

Drinking alcohol and chewing chat were the identified associated factors exposing individual for N. gonorrhoeae infection.

RECOMMENDATIONS

✓ Penicillin and tetracycline should be avoided for treating N. gonorrhoeae infection
✓ Ceftriaxone can be used effectively for treating N. gonorrhoeae infection
✓ The current syndromic management approach with ciprofloxacin treatment should be rechecked for the resistance profile.
✓ Regular behavior and sexuality education is mandatory for those dependency substances users.
✓ Large-scale community based survey should be done to identify the true prevalence and other possible associated factors hidden in the community.
AUTHORS’ CONTRIBUTIONS
TM was major contributor designed the study, participated in data collection, analysis, interpretation and write-up, and drafted the manuscript. RM participated in analysis, interpretation and write-up, drafted the manuscript and critically revised the manuscript. All authors read and approved the final manuscript.

FUNDING
The present study received no financial support and funding from any source.

CONFLICT OF INTEREST
All authors declare no conflict of interest.

ETHICAL APPROVAL
Ethical clearance was obtained from ethical approval committee of College of Medicine and Health Sciences, Bahirdar University. Formal letter of cooperation was written for Bahirdar Regional Health Bureau, Amhara public health institution, Felege Hiwot Referral Hospital, Family Guidance Association, and Bahirdar Health Center. Each respondent was informed about the objective of the study and written consent was signed by each study participant. To ensure confidentiality, data was kept anonymous whereby names of the study subjects was not be written on the questionnaire using codes instead of any personal identifiers. Only positive laboratory test results were given for patient’s respective physician for any beneficiary measure.

ACKNOWLEDGMENT
We would like to thank Bahirdar University, Department of Medical Microbiology, Immunology and Parasitology for giving me this opportunity to conduct this study. We would also like to express my heartfelt gratitude to Amhara public Health Institute (APHI) for providing me culture media and antibiotic disk and allowing me to conduct the project in their microbiology laboratory facility. Finally, our great gratitude goes to all staffs of APHI Microbiology Department for their unreserved technical support throughout the project.

REFERENCES
8. CLSI by P, Jean B. Performance Standards for Antimicrobial, 2016; M100 27th ed 35(1).
18. Hellen G, Molly M and Sumanth. ‘the state of the world’s antibiotics sources include: agor for diagnostics 2015.

32. Miller K ‘Diagnosis and Treatment of N. gonorrhoeae Infections Miller of Tennessee College of Medicine, 2006.

34. MMWR. C. ‘Recommendations for the Laboratory-Based Detection of Chlamydia trachomatis and N. gonorrhoeae, 2014.

47. STI ‘National guidelines for the management of sexually transmitted infections using syndromic approach, 2015.

50. Toskin I, ‘Epidemiology of STIs factors numbers and surveillanc department of reproductive health and research, 2014.

54. WHO ‘Global action plan to control the spread and impact of antimicrobial resistance in N. Gonorrhoeae, 2012; 40.