ASSESSING PLASMODIUM SPP AND LEUCOCYTOZOOM SPP IN INDIGENOUS CHICKEN FROM SOUTHEASTERN CÔTE D’IVOIRE

Kan Frédéric N’Dri, Nawolo Yéo and Yahaya Karamoko*
Cytology, Nangui Abrogoua University, Abidjan, Côte d’Ivoire, 02 BP 801 ABIDJAN 02.

*Corresponding Author: Dr. Yahaya Karamoko
Cytology, Nangui Abrogoua University, Abidjan, Côte d’Ivoire, 02 BP 801 Abidjan 02.

ABSTRACT
This study carried out in the Southeastern area of Côte d’Ivoire from May 2017 to March 2018 in order to determine the prevalence of Plasmodium spp and Leucocytozoon spp in indigenous chicken. A total of 239 blood samples were collected by puncturing the brachial vein from chickens of both sexes. The study was done in two Regions: Abidjan District (Abidjan and Bingerville) and Ayeby Tiassa (Agboville and Sikensi). Microscopic technique has been used to determine the prevalence of Plasmodium spp and Leucocytozoon spp from the smear of chickens. Leucocytozoon spp was absent from the chickens. In addition, the chickens were infected by Plasmodium spp (8.36%). Prevalence of Plasmodium spp was higher in males (13.04%) than in females (5.44%). Adult chickens also showed a higher rate of 11.11% compared to younger which had 6.71%. Plasmodium spp was more detected in rainy season (11.66%) than in dry season (5.04%). Moreover, chickens were most infected in Abidjan District (11.66 %) than in Ayeby Tiassa Region (5.04 %).

KEYWORDS: chicken, Plasmodium, Leucocytozoon, Côte d’Ivoire.

INTRODUCTION
Haemosporidians are one of the most well known groups of parasitic protists. These parasites are common blood parasites of mammals, reptiles, amphibians and birds (Valkiunas, 2005). Bird haemosporidians are cosmopolitan in distribution and are also the largest group of haemosporidians by number of species (Marzal, 2012). Avian haemosporidians have been recorded in about 68% of the avian species which have been examined (Atkinson and Van Riper, 1991).

The main genus of avian haemosporidians which are Plasmodium spp, Haemoproteus spp and Leucocytozoon spp can be pathogenic to their hosts (Bennett et al., 1993; Valkiunas, 1993). Comparatively, species of the genera Plasmodium and Leucocytozoon are considered to be more pathogenic than Haemoproteus spp. (Soulsby, 1982). Plasmodium and Leucocytozoon infections in chickens can cause anorexia, reduced weight gain, poor feed conversion, anaemia, green faeces and often death (Atkinson and Van Riper, 1991., Permin and Juhl, 2002; William, 2005).

The presence of avian haemosporidians have been reported in indigenous chickens of some African countries like Ghana (Poulsen et al., 2000), Nigeria (Karamba et al., 2012) or Cameroon (Sehgal et al., 2006). In Côte d’Ivoire the presence of avian haemosporasites has been reported in wild birds with a higher prevalence along the coastal forested regions (Sehgal et al., 2010); however, no studies on them in chicken have previously been done. Thus, the objective of this work was to determine the prevalence of Plasmodium spp and Leucocytozoon spp in indigenous chickens of the Southeastern Côte d’Ivoire.

MATERIALS AND METHODS
Study area
This study was carried out in Abidjan District and in Ayeby Tiassa Region in the Southeasten of Côte d’Ivoire and are characterized by a dense vegetation. The annual average rain full is about 1600 mm per year and the temperature range from 26°C to 32°C (FAO, 2007). The Ayeby Tiassa Region covers the areas of Sikensi and Agboville; The Abidjan District covers Abidjan and Bingerville (Figure 1). Indigenous chicken are kept by local communities of these areas. In addition, prevalence of avian haemosporidians is higher in the zone (Sehgal et al., 2011).
Figure 1: Location of Côte d’Ivoire in Africa and different study areas.

Collection of blood samples
A total of 239 blood samples were collected randomly in the Southeastern of Côte d’Ivoire from May 2017 to March 2018. The table 1 shows the number of chickens sampled according to Region and localities. Blood was taken by puncturing the brachial vein from each chicken.

Table 1: Number of chickens sampled per Region and localities.

<table>
<thead>
<tr>
<th>Region</th>
<th>Study areas</th>
<th>Number of chickens sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abidjan District</td>
<td>Abidjan</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Bingerville</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
</tr>
<tr>
<td>Ayeby Tiassa</td>
<td>Agboville</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Sikensi</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>119</td>
</tr>
</tbody>
</table>

Parasitological examination
A drop of each sampled blood was used to make blood films on ready-to-use glass slides. The smears were fixed in absolute methanol for 3 to 5 min and stained by immersing in jar containing diluted 10% Giemsa solution for 20 to 30 min. After staining, smears were air dried and then examined under oil immersion ×100 magnification to identify the morphology of *Plasmodium* and *Leucocytozoon*. Haemoparasites were identified according to the description of Valkiunas (2005). Parasitemia was estimated as a percentage by actual counting of the number of parasites per 1,000 red blood cells or per 10,000 red blood cells if infections were light (i.e. <0.1%), as recommended by Godfrey et al. (1987).

Statistical analysis
The prevalences were calculated as follows,
\[
\text{Prevalence} \text{(\%)} = \frac{\text{Number of positive blood smears}}{\text{Total number of smears examined}} \times 100
\]

The proportions of the various studied parameters were subjected to a Chi2 test and SPSS (statistical) software version 20 to evaluate their significant level. The prevalences were significant at 5%.

RESULTS AND DISCUSSION
Haemosporidians seen in blood films
Haemosporidians of genus *plasmodium* were recorded with on overall prevalence of 8.36%. This prevalence is
comparable to results found in Nigeria (Igbokwe et al., 2008) where the prevalence of Plasmodium spp was 9.4 %; but it’s lower than results found in Ghana (Poulsen et al., 2000) where 27 of 100 birds (27.0%) harbored Plasmodium juxtanucleare. All these studies showed low prevalence of Plasmodium spp in West Africa compared to studies in other areas of Africa such as Kenya where prevalence of Plasmodium spp was 53.5% (Sabuni, 2009). This variation in Plasmodium spp prevalence may be attributed to the geographical location of study sites and the size of samples in each study.

The chickens examined in this study lacked Leucocytozoon spp infection. These results are comparable to the studies done by Poulsen et al. (2000) in indigenous chicken of Ghana. Sehgal et al. (2005) also did not find Leucocytozoon spp infection in wild birds in Abidjan area. Others studies done by Sehgal et al. (2006) showed that on 143 chicken tested in Uganda and Cameroon, 18.3% were infected with Leucocytozoon schoutedeni. This variation in Leucocytozoon prevalence may also be attributed to the geographical location of studies sites.

Few development form of Plasmodium spp was found in the examined slides; most were trophozoites and meronts (Figure 2).

Figure 2: Blood stages of Plasmodium spp as seen in blood films. a: Trophoites; b-c: meronts.

Moreover infected chickens presented a low parasitemia (0.02%). The activation of the immune system may explain this low parasitemia. Indeed, Cellier-Holzem et al. (2010), and Paulman and McAllister (2005) found that parasitemia of avian plasmodium was low in Reexposed birds.

Prevalence of Plasmodium spp according to age and sex
Amoung the age groups, adults birds had a slightly higher prevalence (11.11 %) than the younger birds (6.71%). Male birds also showed higher prevalence of 13.04% compared to female birds, 5.44% (Table 2). Statistical test did’nt show significant differences in Plasmodium spp prevalence amoung age groups (p= 0.22) but Plasmodium spp was significantly more prevalent in male birds than female birds (p= 0.038).

Table 2: Prevalence of Plasmodium spp according to age and sex.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number examined</th>
<th>Number infected</th>
<th>Prevalence (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>90</td>
<td>10</td>
<td>11.11</td>
<td>0.22</td>
</tr>
<tr>
<td>Youngs</td>
<td>149</td>
<td>10</td>
<td>6.71</td>
<td></td>
</tr>
<tr>
<td>Sexes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>92</td>
<td>12</td>
<td>13.04</td>
<td>0.038</td>
</tr>
<tr>
<td>Males</td>
<td>147</td>
<td>8</td>
<td>5.44</td>
<td></td>
</tr>
</tbody>
</table>

According to McCurdy et al. (1998) Male birds tend to have a higher prevalence of infection than females. But our results were in contrast to results found by Hasson (2015) who reported high prevalence in female than male chicken. We didn’t explain this difference.

Prevalence of Plasmodium spp according to season
The prevalence of Plasmodium spp was higher in the rainy season (11.66%) than in the dry season (5.04%) (Table 3) but the difference was not significant (p= 0.06).

Table 3: Prevalence of Plasmodium spp according to season.

<table>
<thead>
<tr>
<th>Season</th>
<th>Number examined</th>
<th>Number infected</th>
<th>Prevalence (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainy season</td>
<td>120</td>
<td>14</td>
<td>11.66</td>
<td>0.06</td>
</tr>
<tr>
<td>Dry season</td>
<td>119</td>
<td>6</td>
<td>5.04</td>
<td></td>
</tr>
</tbody>
</table>
The same observation was made by Bennett et al. (1974) and Igbokeke et al. (2008). These results may be explained by the fact that the rainy season is favourable to vectors development.

Prevalence of Plasmodium spp according to study area

Between the four study areas, Abidjan was found to have the highest prevalence (13.33%) followed by Bingerville (10%), Agboville (6.67%) and Sikensi (3.39%); So prevalence of Plasmodium spp in Abidjan District (11.66%) was higher than in Ayebi Tiassa Region (5.04%), (Table 4).

Table 4: Prevalence of Plasmodium spp per study area

<table>
<thead>
<tr>
<th>Region</th>
<th>Study areas</th>
<th>Number examined</th>
<th>Number infected</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abidjan District</td>
<td>Abidjan</td>
<td>60</td>
<td>8</td>
<td>13.33</td>
</tr>
<tr>
<td></td>
<td>Bingerville</td>
<td>60</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td>14</td>
<td>11.66</td>
</tr>
<tr>
<td>Ayebi Tiassa</td>
<td>Agboville</td>
<td>60</td>
<td>4</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td>Sikensi</td>
<td>59</td>
<td>2</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>119</td>
<td>6</td>
<td>5.04</td>
</tr>
</tbody>
</table>

These results are comparable to those of Sehgal et al. (2011) which found that regions of high prevalence of Plasmodium spp in Côte d’Ivoire were the coastal forested regions.

CONCLUSION

This study has confirmed the presence of Plasmodium spp in indigenous chickens of the Southeastern of Côte d’Ivoire; but no infection with Leucocytozoon spp was found. The prevalence of Plasmodium spp was higher in Adult birds than younger birds; Male birds where also most infected than female birds. Moreover, indigenous chickens were most infected by Plasmodium spp in rainy season than dry season. The region, which showed the highest prevalence, was Abidjan District. This study was the thirst on avian haemosporidian in indigenous chickens of Côte d’Ivoire. Further study need to be done to evaluate the impact of infestation on the health and productivity of these birds.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the farmers who accepted to participate at this study.

REFERENCES

